Abstract
Scalability is a challenge for Large Scale Optimization Problems (LSGO). Improving the scalability of efficient Differential Evolution algorithms (DE) has been a research focus due to their successful application to high-dimensional problems. Recently, a DE-based algorithm called LSMDE (Low-dimensional Space Modeling-based Differential Evolution) has shown promising results in solving LSGO problems on the CEC’2013 large-scale global optimization suite. LSMDE uses dimensionality reduction to generate an alternative search space and Gaussian mixture models to deal with the information loss caused by uncertainty from space transformation. This paper aims to extend the initial research through the scalability analysis of the LSMDE’s performance compared with its main competitors, SHADE-ILS and GL-SHADE, on bbob-largescale suite functions. The results show that although all competing algorithms perform worse as dimensionality increases, LSMDE outperforms the competition and is robust to dimensionality expansion in search spaces with diverse characteristics, achieving a target hit rate between \(40\%\) and \(80\%\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bagattini, F., Schoen, F., Tigli, L.: Clustering methods for the optimization of atomic cluster structure. J. Chem. Phys. 148(14), 144102 (2018)
Bagattini, F., Schoen, F., Tigli, L.: Clustering methods for large scale geometrical global optimization. Optim. Methods Softw. 34(5), 1099–1122 (2019)
Baş, E., Ülker, E.: Improved social spider algorithm for large scale optimization. Artif. Intell. Rev. 54(5), 3539–3574 (2021)
Blei, D.M., Jordan, M.I.: Variational inference for Dirichlet process mixtures. Bayesian Anal. 1(1), 121–143 (2006)
Brockhoff, D., Auger, A., Hansen, N., Tušar, T.: Using well-understood single-objective functions in multiobjective black-box optimization test suites. Evol. Comput. 30(2), 165–193 (2022)
Chen, M., Du, W., Song, W., Liang, C., Tang, Y.: An improved weighted optimization approach for large-scale global optimization. Complex Intell. Syst. 8(2), 1259–1280 (2022)
Dasgupta, S.: Learning mixtures of gaussians. In: 40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039), pp. 634–644. IEEE (1999)
Dasgupta, S., Gupta, A.: An elementary proof of the johnson-lindenstrauss lemma. International Computer Science Institute, Technical Report 22(1), pp. 1–5 (1999)
De Falco, I., Della Cioppa, A., Trunfio, G.A.: Investigating surrogate-assisted cooperative coevolution for large-scale global optimization. Inf. Sci. 482, 1–26 (2019)
Diaconis, P., Freedman, D.: Asymptotics of graphical projection pursuit. The annals of statistics, pp. 793–815 (1984)
Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: presentation of the noiseless functions. Technical report, Citeseer (2010)
Fonseca, T.H.L., Nassar, S.M., de Oliveira, A.C.M., Agard, B.: Low-dimensional space modeling-based differential evolution for large scale global optimization problems. IEEE Trans. Evol. Comput. (2022)
Iorio, A.W., Li, X.: Improving the performance and scalability of differential evolution. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 131–140. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89694-4_14
Kabán, A., Bootkrajang, J., Durrant, R.J.: Towards large scale continuous EDA: a random matrix theory perspective. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 383–390 (2013)
Kishore Kumar, N., Schneider, J.: Literature survey on low rank approximation of matrices. Linear Multilinear Algebra 65(11), 2212–2244 (2017)
Li, L., Fang, W., Mei, Y., Wang, Q.: Cooperative coevolution for large-scale global optimization based on fuzzy decomposition. Soft. Comput. 25(5), 3593–3608 (2021)
Li, X., Tang, K., Omidvar, M.N., Yang, Z., Qin, K., China, H.: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization. Gene 7(33), 8 (2013)
Long, W., Wu, T., Liang, X., Xu, S.: Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Syst. Appl. 123, 108–126 (2019)
Ma, Y., Bai, Y.: A multi-population differential evolution with best-random mutation strategy for large-scale global optimization. Appl. Intell. 50(5), 1510–1526 (2020)
Mahdavi, S., Rahnamayan, S., Deb, K.: Partial opposition-based learning using current best candidate solution. In: IEEE Symposium Series on Computational Intelligence, pp. 1–7 (2016)
Maučec, M.S., Brest, J.: A review of the recent use of differential evolution for large-scale global optimization: an analysis of selected algorithms on the cec 2013 lsgo benchmark suite. Swarm Evol. Comput. 50, 100428 (2019)
Molina, D., LaTorre, A., Herrera, F.: Shade with iterative local search for large-scale global optimization. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2018)
Morales, J.L., Nocedal, J.: Remark on “algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound constrained optimization’’. ACM Trans. Math. Softw. (TOMS) 38(1), 1–4 (2011)
Omidvar, M.N., Li, X.: Evolutionary large-scale global optimization: an introduction. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 807–827 (2017)
Omidvar, M.N., Li, X., Yao, X.: A review of population-based metaheuristics for large-scale black-box global optimization: Part b. IEEE Trans. Evol. Comput., 1 (2021). https://doi.org/10.1109/TEVC.2021.3130835
Pacheco-Del-Moral, O., Coello, C.A.C.: A shade-based algorithm for large scale global optimization. In: International Conference on Parallel Problem Solving from Nature, pp. 650–663. Springer (2020)
Segredo, E., Paechter, B., Segura, C., González-Vila, C.I.: On the comparison of initialisation strategies in differential evolution for large scale optimisation. Optim. Lett. 12(1), 221–234 (2018)
Tabernik, D., Skočaj, D.: Deep learning for large-scale traffic-sign detection and recognition. IEEE Trans. Intell. Transp. Syst. 21(4), 1427–1440 (2019)
Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation, pp. 71–78. IEEE (2013)
Tseng, L.Y., Chen, C.: Multiple trajectory search for large scale global optimization. In: IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 3052–3059 (2008)
Varelas, K., et al.: Benchmarking large-scale continuous optimizers: the BBOB-largescale testbed, a coco software guide and beyond. Appl. Soft Comput. 97, 106737 (2020)
Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: Qana: quantum-based avian navigation optimizer algorithm. Eng. Appl. Artif. Intell. 104, 104314 (2021)
Acknowledgment
This research was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and by a research grant from Science Foundation Ireland (SFI) under grant no. SFI/16/RC/3918 (CONFIRM) and Marie Sklodowska-Curie grant agreement no. 847.577 co-funded by the European Regional Development Fund.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fonseca, T.H.L., Nassar, S.M., de Oliveira, A.C.M., Agard, B. (2023). Low-Dimensional Space Modeling-Based Differential Evolution: A Scalability Perspective on bbob-largescale suite. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14134. Springer, Cham. https://doi.org/10.1007/978-3-031-43085-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-43085-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43084-8
Online ISBN: 978-3-031-43085-5
eBook Packages: Computer ScienceComputer Science (R0)