Abstract
Neuromarketing exploits neuroimaging techniques to study consumers’ responses to various marketing aspects, with the goal of gaining a more thorough understanding of the decision-making process. The neuroimaging technology encountered the most in neuromarketing studies is Electroencephalography (EEG), mainly due to its non-invasiveness, low cost and portability. Opposed to typical neuromarketing practices, which rely on signal-power related features, we introduce an efficient decoding scheme that is based on the principles of Riemannian Geometry and realized by means of a suitable deep learning (DL) architecture (i.e., SPDNet). We take advantage of a recently released, multi-subject, neuromarketing dataset to train SPDNet under the close-to-real-life scenario of product selection from a supermarket leaflet and compare its performance against standard tools in EEG-based neuromarketing. The sample covariance is used as an estimator of the ‘quasi-instantaneous’, brain activation pattern and derived from the multichannel signal recorded while the subject is gazing at a given product. Pattern derivation is followed by proper re-alignment to reduce covariate shift (inter-subject variability) before SPDNet casts its binary decision (i.e., “Buy”-“NoBuy”). The proposed decoder is characterized by sufficient generalizability to derive valid predictions upon unseen brain signals. Overall, our experimental results provide clear evidence about the superiority of the DL-decoder relatively to both conventional neuromarketing and alternative Riemannian Geometry-based approaches, and further demonstrate how neuromarketing can benefit from recent advances in data-centric machine learning and the availability of relevant experimental datasets.
This work was a part of project NeuroMkt, co-financed by the European Regional Development Fund of the EU and Greek National Funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH CREATE INNOVATE (Project code T2EDK-03661).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ali, A., et al.: EEG signals based choice classification for neuromarketing applications. In: Kumar, P., Obaid, A.J., Cengiz, K., Khanna, A., Balas, V.E. (eds.) A Fusion of Artificial Intelligence and Internet of Things for Emerging Cyber Systems. ISRL, vol. 210, pp. 371–394. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-76653-5_20
Bengio, Y., Paiement, J.f., Vincent, P., Delalleau, O., Roux, N., Ouimet, M.: Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering. In: Advances in Neural Information Processing Systems, vol. 16 (2003)
Bini, D.A., Iannazzo, B.: Computing the Karcher mean of symmetric positive definite matrices. Linear Algebra Appl. 438(4), 1700–1710 (2013)
Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2007)
Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. (CSUR) 49(2), 1–50 (2016)
Cohen, M.X.: Analyzing Neural Time Series Data: Theory and Practice. MIT press, Cambridge (2014)
Congedo, M., Barachant, A., Bhatia, R.: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Comput. Interfaces 4(3), 155–174 (2017)
Daly, I., Scherer, R., Billinger, M., Müller-Putz, G.: Force: fully online and automated artifact removal for brain-computer interfacing. IEEE Trans. Neural Syst. Rehabil. Eng. 23(5), 725–736 (2014)
García-Madariaga, J., Moya, I., Recuero, N., Blasco, M.F.: Revealing unconscious consumer reactions to advertisements that include visual metaphors. a neurophysiological experiment. Front. Psychol. 11, 760 (2020)
Georgiadis, K., Adamos, D.A., Nikolopoulos, S., Laskaris, N., Kompatsiaris, I.: A graph-theoretic sensor-selection scheme for covariance-based motor imagery (MI) decoding. In: 2020 28th European Signal Processing Conference (EUSIPCO), pp. 1234–1238. IEEE (2021)
Georgiadis, K., Kalaganis, F.P., Riskos, K. et al.: NeuMa - the absolute neuromarketing dataset en route to an holistic understanding of consumer behaviour. Sci. Data 10, 508 (2023). https://doi.org/10.1038/s41597-023-02392-9
Georgiadis, K., Kalaganis, F.P., Oikonomou, V.P., Nikolopoulos, S., Laskaris, N.A., Kompatsiaris, I.: Rneumark: a Riemannian EEG analysis framework for neuromarketing. Brain Inform. 9(1), 22 (2022)
Georgiadis, K., Laskaris, N., Nikolopoulos, S., Kompatsiaris, I.: Exploiting the heightened phase synchrony in patients with neuromuscular disease for the establishment of efficient motor imagery bcis. J. Neuroeng. Rehabil. 15(1), 1–18 (2018)
Hakim, A., Klorfeld, S., Sela, T., Friedman, D., Shabat-Simon, M., Levy, D.J.: Machines learn neuromarketing: improving preference prediction from self-reports using multiple EEG measures and machine learning. Int. J. Res. Mark. 38(3), 770–791 (2021)
Huang, Z., Van Gool, L.: A Riemannian network for SPD matrix learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)
Kalaganis, F.P., Georgiadis, K., Oikonomou, V.P., Laskaris, N.A., Nikolopoulos, S., Kompatsiaris, I.: Unlocking the subconscious consumer bias: a survey on the past, present, and future of hybrid EEG schemes in neuromarketing. Front. Neuroergonomics 2, 11 (2021)
Kalaganis, F.P., Laskaris, N.A., Chatzilari, E., Nikolopoulos, S., Kompatsiaris, I.: A data augmentation scheme for geometric deep learning in personalized brain-computer interfaces. IEEE Access 8, 162218–162229 (2020)
Kalaganis, F.P., Laskaris, N.A., Chatzilari, E., Nikolopoulos, S., Kompatsiaris, I.: A Riemannian geometry approach to reduced and discriminative covariance estimation in brain computer interfaces. IEEE Trans. Biomed. Eng. 67(1), 245–255 (2019)
Kobler, R., Hirayama, J.i., Zhao, Q., Kawanabe, M.: SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG. In: Advances in Neural Information Processing Systems, vol. 35, pp. 6219–6235 (2022)
MacKenzie, S.B., Podsakoff, P.M.: Common method bias in marketing: causes, mechanisms, and procedural remedies. J. Retail. 88(4), 542–555 (2012)
Mullen, T.R., et al.: Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Trans. Biomed. Eng. 62(11), 2553–2567 (2015)
Naser, D.S., Saha, G.: Influence of music liking on EEG based emotion recognition. Biomed. Signal Process. Control 64, 102251 (2021)
Oikonomou, V.P., Georgiadis, K., Kalaganis, F., Nikolopoulos, S., Kompatsiaris, I.: A sparse representation classification scheme for the recognition of affective and cognitive brain processes in neuromarketing. Sensors 23(5), 2480 (2023)
Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vision 66, 41–66 (2006)
Rawnaque, F.S., et al.: Technological advancements and opportunities in neuromarketing: a systematic review. Brain Inform. 7, 1–19 (2020)
Vecchiato, G., et al.: Neurophysiological tools to investigate consumer’s gender differences during the observation of tv commercials. Comput. Math. Methods Med. 2014 (2014)
Wang, Y., Qiu, S., Ma, X., He, H.: A prototype-based SPD matrix network for domain adaptation EEG emotion recognition. Pattern Recogn. 110, 107626 (2021)
Yadava, M., Kumar, P., Saini, R., Roy, P.P., Prosad Dogra, D.: Analysis of EEG signals and its application to neuromarketing. Multimedia Tools Appl. 76, 19087–19111 (2017)
Zanini, P., Congedo, M., Jutten, C., Said, S., Berthoumieu, Y.: Transfer learning: a Riemannian geometry framework with applications to brain-computer interfaces. IEEE Trans. Biomed. Eng. 65(5), 1107–1116 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Georgiadis, K., Kalaganis, F.P., Oikonomou, V.P., Nikolopoulos, S., Laskaris, N.A., Kompatsiaris, I. (2023). Harneshing the Potential of EEG in Neuromarketing with Deep Learning and Riemannian Geometry. In: Liu, F., Zhang, Y., Kuai, H., Stephen, E.P., Wang, H. (eds) Brain Informatics. BI 2023. Lecture Notes in Computer Science(), vol 13974. Springer, Cham. https://doi.org/10.1007/978-3-031-43075-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-43075-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43074-9
Online ISBN: 978-3-031-43075-6
eBook Packages: Computer ScienceComputer Science (R0)