Abstract
Individual differences are known to modulate brain responses to music. Recent neuroscience research suggests that each individual has unique and fundamentally stable functional brain connections irrespective of task. Our study aims to identify individual differences such as gender and musical expertise from brain responses to music. Thirty-six participants’ functional Magnetic Resonance Imaging (fMRI) responses were measured while listening to three 8-min-long musical pieces representing different musical styles. They were analyzed using various temporal and spectral functional connectivity (FC) measures. These FC measures were compared to identify the one that captured the most variation associated with gender and musical expertise. Subsequently, the measures were used to classify distinct population groupings using a binary Support Vector Machine (SVM). Our results revealed that Coherence, a spectral-domain FC measure, captured the maximum variation for musical stimuli. However, in classifying individuals based on gender and musical expertise, a composite measure outperformed any single measure and had above-chance accuracy. This suggests that each FC measure captures different aspects of the relationship between brain regions and is influenced by the level of analysis (group or individual) and the task, such as similarity analysis or classification. Further ramifications of the findings are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alluri, V., et al.: Musical expertise modulates functional connectivity of limbic regions during continuous music listening. Psychomusicology: Music Mind Brain 25(4), 443–454 (2015)
Alluri, V., Toiviainen, P., Burunat, I., Kliuchko, M., Vuust, P., Brattico, E.: Connectivity patterns during music listening: evidence for action-based processing in musicians. Hum. Brain Mapp. 38(6), 2955–2970 (2017)
Alluri, V., Toiviainen, P., Jääskeläinen, I.P., Glerean, E., Sams, M., Brattico, E.: Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. NeuroImage 59(4), 3677–3689 (2012)
Angulo-Perkins, A., Aubé, W., Peretz, I., Barrios, F.A., Armony, J.L., Concha, L.: Music listening engages specific cortical regions within the temporal lobes: differences between musicians and non-musicians. Cortex 59, 126–137 (2014)
Best, D.J., Roberts, D.E.: Algorithm AS 89: the upper tail probabilities of Spearman’s rho. Appl. Stat. 24(3), 377 (1975)
Bonneville-Roussy, A., Rentfrow, P.J., Xu, M.K., Potter, J.: Music through the ages: trends in musical engagement and preferences from adolescence through middle adulthood. J. Pers. Soc. Psychol. 105(4), 703–717 (2013)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Buck, J.R., Daniel, M.M., Singer, A.: Computer explorations in signals and systems using MATLAB. Prentice Hall (2002)
Burunat, I., Brattico, E., Puoliväli, T., Ristaniemi, T., Sams, M., Toiviainen, P.: Action in perception: prominent visuo-motor functional symmetry in musicians during music listening. PLOS ONE 10(9), e0138238 (2015)
Damoiseaux, J.S., et al.: Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. 103(37), 13848–13853 (2006)
Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)
Friedrich, S., Brunner, E., Pauly, M.: Permuting longitudinal data in spite of the dependencies. J. Multivar. Anal. 153, 255–265 (2017)
Gaser, C., Schlaug, G.: Brain structures differ between musicians and non-musicians. J. Neurosci. 23(27), 9240–9245 (2003)
Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)
Gibbons, J.D., Chakraborti, S.: Nonparametric statistical inference. In: Lovric, M. (eds.)International Encyclopedia of Statistical Science, pp. 977–979. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-04898-2_420
Glerean, E., Salmi, J., Lahnakoski, J.M., Jääskeläinen, I.P., Sams, M.: Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity. Brain Connectivity 2(2), 91–101 (2012)
González, A.G., Rodrıguez, J., Sagartzazu, X., Schumacher, A., Isasa, I.: Multiple coherence method in time domain for the analysis of the transmission paths of noise and vibrations with non stationary signals. In: Proceedings of ISMA 2010 (2010)
Gratton, C., et al.: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98(2), 439–452 (2018)
Greenberg, D.M., Baron-Cohen, S., Stillwell, D.J., Kosinski, M., Rentfrow, P.J.: Musical preferences are linked to cognitive styles. PLOS ONE 10(7), e0131151 (2015)
Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. 100(1), 253–258 (2002)
Grinsted, A., Moore, J.C., Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11(5/6), 561–566 (2004)
Imfeld, A., Oechslin, M.S., Meyer, M., Loenneker, T., Jancke, L.: White matter plasticity in the corticospinal tract of musicians: a diffusion tensor imaging study. NeuroImage 46(3), 600–607 (2009)
Ingalhalikar, M., et al.: Sex differences in the structural connectome of the human brain. Proc. Natl. Acad. Sci. 111(2), 823–828 (2013)
Laurienti, P.J., Joyce, K.E., Telesford, Q.K., Burdette, J.H., Hayasaka, S.: Universal fractal scaling of self-organized networks. Phys. A: Stat. Mech. Appl. 390(20), 3608–3613 (2011)
Mohanty, R., Sethares, W.A., Nair, V.A., Prabhakaran, V.: Rethinking measures of functional connectivity via feature extraction. Sci. Rep. 10(1), 1298 (2020)
Niranjan, D., Toiviainen, P., Brattico, E., Alluri, V.: Dynamic functional connectivity in the musical brain. In: Liang, P., Goel, V., Shan, C. (eds.) BI 2019. LNCS, vol. 11976, pp. 82–91. Springer, Cham (2019)
North, A.C.: Individual differences in musical taste. Am. J. Psychol. 123(2), 199–208 (2010)
North, A.C., Hargreaves, D.J., O’Neill, S.A.: The importance of music to adolescents. Br. J. Educ. Psychol. 70(2), 255–272 (2000)
Paliwal, K., Agarwal, A., Sinha, S.S.: A modification over Sakoe and Chiba’s dynamic time warping algorithm for isolated word recognition. Sig. Process. 4(4), 329–333 (1982)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Rentfrow, P.J., Gosling, S.D.: The do re MI’s of everyday life: the structure and personality correlates of music preferences. J. Pers. Soc. Psychol. 84(6), 1236–1256 (2003)
Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40, 99–121 (2004)
Saari, P., Burunat, I., Brattico, E., Toiviainen, P.: Decoding musical training from dynamic processing of musical features in the brain. Sci. Rep. 8(1), 708 (2018)
Salvador, R., Suckling, J., Coleman, M.R., Pickard, J.D., Menon, D., Bullmore, E.: Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15(9), 1332–1342 (2005)
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)
Shirer, W.R., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.D.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22(1), 158–165 (2011)
Simpson, S.L., Bowman, F.D., Laurienti, P.J.: Analyzing complex functional brain networks: fusing statistics and network science to understand the brain. Stat. Surv. 7, 1 (2013)
Sørensen, T., Sørensen, T., Biering-Sørensen, T., Sørensen, T., Sorensen, J.T.: A method of establishing group of equal amplitude in plant sociobiology based on similarity of species content and its application to analyses of the vegetation on Danish commons (1948)
Telesford, Q.K., Simpson, S.L., Burdette, J.H., Hayasaka, S., Laurienti, P.J.: The brain as a complex system: using network science as a tool for understanding the brain. Brain Connectivity 1(4), 295–308 (2011)
Toiviainen, P., Burunat, I., Brattico, E., Vuust, P., Alluri, V.: The chronnectome of musical beat. NeuroImage 216, 116191 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jain, A., Toiviainen, P., Alluri, V. (2023). Predicting Individual Differences from Brain Responses to Music: A Comparison of Functional Connectivity Measures. In: Liu, F., Zhang, Y., Kuai, H., Stephen, E.P., Wang, H. (eds) Brain Informatics. BI 2023. Lecture Notes in Computer Science(), vol 13974. Springer, Cham. https://doi.org/10.1007/978-3-031-43075-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-43075-6_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43074-9
Online ISBN: 978-3-031-43075-6
eBook Packages: Computer ScienceComputer Science (R0)