Abstract
Alzheimer’s disease (AD) is a progressive and irreversible neurological disorder that affects millions of people worldwide. Early detection and accurate diagnosis of AD are crucial for effective treatment and management of the disease. In this paper, we propose a transfer learning-based approach for the diagnosis of AD using magnetic resonance imaging (MRI) data. Our approach involves extracting relevant features from the MRI data using transfer learning by alter the weights and then using these features to train pre-trained models and combined ensemble classifier. We evaluated our approach on a dataset of MRI scans from patients with AD and healthy controls, achieving an accuracy of 95% for combined ensemble models. Our results demonstrate the potential of transfer learning-based approaches for the early and accurate diagnosis of AD, which could lead to improved patient outcomes and more effective management of the disease.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Raihan, S.M., et al.: A belief rule based expert system to diagnose Alzheimer’s disease using whole blood gene expression data. In: Mahmud, M., He, J., Vassanelli, S., van Zundert, A., Zhong, N. (eds.) BI 2022. Lecture Notes in Computer Science, vol. 12892, pp. 295–304. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15037-1_25
Shaffi, N., Hajamohideen, F., Abdesselam, A., Mahmud, M., Subramanian, K.: Ensemble classifiers for a 4-way classification of Alzheimer’s disease. In: Mahmud, M., Ieracitano, C., Kaiser, M.S., Mammone, N., Morabito, F.C. (eds.) AII 2022. Communications in Computer and Information Science, vol. 1724, pp. 219–230. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-24801-6_16
Ismail, W.N., Fathimathul Rajeena, P.P., Ali, M.A.S.: A meta-heuristic multi-objective optimization method for Alzheimer’s disease detection based on multi-modal data. Mathematics 11(4), 957 (2023). https://doi.org/10.3390/math11040957
An, N., et al.: Deep ensemble learning for Alzheimer’s disease classification. J. Biomed. Inf. 105, 103411 (2021). https://doi.org/10.1016/j.jbi.2020.103411
Islam, J., Zhang, Y.: A novel deep learning based multi-class classification method for Alzheimer’s disease detection using brain MRI data. In: Zeng, Y., et al. (eds.) Brain Informatics. Lecture Notes in Computer Science, vol. 10654, pp. 213–222. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70772-3_20
Bandyopadhyay, A., et al.: Alzheimer’s disease detection using ensemble learning and artificial neural networks. In: Santosh, K., Goyal, A., Aouada, D., Makkar, A., Chiang, Y.Y., Singh, S.K. (eds.) RTIP2R 2022. Communications in Computer and Information Science, vol. 1704, pp. 12–21. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-23599-3_2
Salehi, A.W., et al.: A CNN model: earlier diagnosis and classification of Alzheimer disease using MRI. In: 2020 International Conference on Smart Electronics and Communication (ICOSEC) (2020). https://doi.org/10.1109/icosec49089.2020.9215402
Sethi, M., Ahuja, S.: Alzheimer disease classification using MRI images based on transfer learning. In: Innovations in Computational and Computer Techniques, ICACCT-2021 (2022). https://doi.org/10.1063/5.0108540
Liu, C., et al.: Monte Carlo ensemble neural network for the diagnosis of Alzheimer’s disease. Neural Netw. 159, 14–24 (2023). https://doi.org/10.1016/j.neunet.2022.10.032
Savaş, S.: Detecting the stages of Alzheimer’s disease with pre-trained deep learning architectures. Arab. J. Sci. Eng. 47, 2201–2218 (2022). https://doi.org/10.1007/s13369-021-06131-3
Agarwal, D., et al.: Transfer learning for Alzheimer’s disease through neuroimaging biomarkers: a systematic review. Sensors 21(21), 7259 (2021). https://doi.org/10.3390/s21217259
Zhang, Y., Li, H., Zheng, Q.: A comprehensive characterization of hippocampal feature ensemble serves as individualized brain signature for Alzheimer’s disease: deep learning analysis in 3238 participants worldwide. Eur. Radiol. 1–13 (2023). https://doi.org/10.1007/s00330-023-09519-x
Ouchicha, C., et al.: A novel deep convolutional neural network model for Alzheimer’s disease classification using brain MRI. Autom. Control. Comput. Sci. 56(3), 261–271 (2022). https://doi.org/10.3103/s0146411622030063
Kaggle: Alzheimers’ Dataset (2023). www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images
Feng, C., et al.: Deep learning framework for Alzheimer’s disease diagnosis via 3D-CNN and FSBI-LSTM. IEEE Access 7, 63605–63618 (2019). https://doi.org/10.1109/access.2019.2913847
Bangyal, W.H., et al.: Constructing domain ontology for Alzheimer disease using deep learning based approach. Electronics 11(12), 1890 (2022). https://doi.org/10.3390/electronics11121890
Anbarjafari, G.: Introduction to image processing (2023).https://www.sisu.ut.ee/imageprocessing/book/1
GeeksforGeek: Image Resizing using OpenCV (2023), https://www.geeksforgeeks.org/image-resizing-using-opencv-python/
Stakeoverflow: normalization in image processing (2023). https://stackoverflow.com/questions/33610825/normalization-in-image-processing
Ashtari-Majlan, M., Seifi, A., Dehshibi, M.M.: A multi-stream convolutional neural network for classification of progressive MCI in Alzheimer’s disease using structural MRI images. IEEE J. Biomed. Health Inf. 26(8), 3918–3926 (2022). https://doi.org/10.1109/JBHI.2022.3155705
Ji, H., et al.: Early diagnosis of Alzheimer’s disease using deep learning. In: Proceedings of the 2nd International Conference on Control and Computer Vision (2019). https://doi.org/10.1145/3341016.3341024
Francis, A., Pandian, I.A.: The Alzheimer’s disease neuroimaging initiative. Early detection of Alzheimer’s disease using local binary pattern and convolutional neural network. Multimed. Tools Appl. 80, 29585–29600 (2021). https://doi.org/10.1007/s11042-021-11161-y
Warnita, T., Inoue, N., Shinoda, K.: Detecting Alzheimer’s disease using gated convolutional neural network from audio data. arXiv preprint arXiv:1803.11344 (2018). https://doi.org/10.21437/interspeech.2018-1713
Nawaz, A., Anwar, S.M., Liaqat, R., Iqbal, J., Bagci, U., Majid, M.: Deep convolutional neural network based classification of Alzheimer’s disease using MRI data. In: IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, pp. 1–6 (2020). https://doi.org/10.1109/INMIC50486.2020.9318172
Raju, M., Gopi, V.P., Anitha, V.S., et al.: Multi-class diagnosis of Alzheimer’s disease using cascaded three dimensional-convolutional neural network. Phys. Eng. Sci. Med. 43, 1219–1228 (2020). https://doi.org/10.1007/s13246-020-00924-w
AbdulAzeem, Y., Bahgat, W.M., Badawy, M.: A CNN based framework for classification of Alzheimer’s disease. Neural Comput. Appl. 33, 10415–10428 (2021). https://doi.org/10.1007/s00521-021-05799-w
Lanjewar, M.G., Parab, J.S., Shaikh, A.Y.: Development of framework by combining CNN with KNN to detect Alzheimer’s disease using MRI images. Multimed. Tools Appl. 82, 12699–12717 (2023). https://doi.org/10.1007/s11042-022-13935-4
Mahmud, T., Barua, A., Begum, M., Chakma, E., Das, S., Sharmen, N.: An improved framework for reliable cardiovascular disease prediction using hybrid ensemble learning. In 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6. IEEE (2023)
Mahmud, T., et al.: Reason based machine learning approach to detect Bangla abusive social media comments. In: Vasant, P., Weber, G.W., Marmolejo-Saucedo, J.A., Munapo, E., Thomas, J.J. (eds.) ICO 2022. Lecture Notes in Networks and Systems, vol. 569. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19958-5_46
Mahmud, T., et al.: A decision concept to support house hunting. Int. J. Adv. Comput. Sci. Appl. 13(10) (2022). https://doi.org/10.14569/ijacsa.2022.0131091
Das, S., et al.: Deep transfer learning-based foot no-ball detection in live cricket match. Comput. Intell. Neurosci. 2398121, 12 (2023). https://doi.org/10.1155/2023/2398121
Hossain, M.S., Habib, I.B., Andersson, K.: A belief rule based expert system to diagnose dengue fever under uncertainty. In: 2017 Computing Conference, pp. 179–186. IEEE (2017)
Mahmud, T., et al.: An optimal learning model for training expert system to detect uterine cancer. Procedia Comput. Sci. 184, 356–363 (2021)
Islam, D., Mahmud, T., Chowdhury, T.: An efficient automated vehicle license plate recognition system under image processing. Indonesian J. Electr. Eng. Comput. Sci. 29(2), 1055–1062 (2023)
Hossain, M.S., Rahaman, S., Kor, A.L., Andersson, K., Pattinson, C.: A belief rule based expert system for datacenter PUE prediction under uncertainty. IEEE Trans. Sustain. Comput. 2(2), 140–153 (2017)
Patwary, M.J.A., Akter, S., Mahmud, T.: An expert system to detect uterine cancer under uncertainty. IOSR J. Comput. Eng. (IOSR-JCE), e-ISSN, 2278–0661 (2014)
Hossain, M.S., Rahaman, S., Mustafa, R., Andersson, K.: A belief rule-based expert system to assess suspicion of acute coronary syndrome (ACS) under uncertainty. Soft. Comput. 22(22), 7571–7586 (2018)
Mahmud, T., Hossain, M.S.: An evidential reasoning-based decision support system to support house hunting. Int. J. Comput. Appl. 57(21), 51–58 (2012)
Mahmud, T., Rahman, K.N., Hossain, M.S.: Evaluation of job offers using the evidential reasoning approach. Glob. J. Comput. Sci. Technol. 13(D2), 35–44 (2013)
Islam, M.M., Mahmud, T., Hossain, M.S.: Belief-rule-based intelligent decision system to select hospital location. Indonesian J. Electr. Eng. Comput. Sci. 1(3), 607–618 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mahmud, T. et al. (2023). Exploring Deep Transfer Learning Ensemble for Improved Diagnosis and Classification of Alzheimer’s Disease. In: Liu, F., Zhang, Y., Kuai, H., Stephen, E.P., Wang, H. (eds) Brain Informatics. BI 2023. Lecture Notes in Computer Science(), vol 13974. Springer, Cham. https://doi.org/10.1007/978-3-031-43075-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-43075-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43074-9
Online ISBN: 978-3-031-43075-6
eBook Packages: Computer ScienceComputer Science (R0)