Nothing Special   »   [go: up one dir, main page]

Skip to main content

Exploring Deep Transfer Learning Ensemble for Improved Diagnosis and Classification of Alzheimer’s Disease

  • Conference paper
  • First Online:
Brain Informatics (BI 2023)

Abstract

Alzheimer’s disease (AD) is a progressive and irreversible neurological disorder that affects millions of people worldwide. Early detection and accurate diagnosis of AD are crucial for effective treatment and management of the disease. In this paper, we propose a transfer learning-based approach for the diagnosis of AD using magnetic resonance imaging (MRI) data. Our approach involves extracting relevant features from the MRI data using transfer learning by alter the weights and then using these features to train pre-trained models and combined ensemble classifier. We evaluated our approach on a dataset of MRI scans from patients with AD and healthy controls, achieving an accuracy of 95% for combined ensemble models. Our results demonstrate the potential of transfer learning-based approaches for the early and accurate diagnosis of AD, which could lead to improved patient outcomes and more effective management of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Raihan, S.M., et al.: A belief rule based expert system to diagnose Alzheimer’s disease using whole blood gene expression data. In: Mahmud, M., He, J., Vassanelli, S., van Zundert, A., Zhong, N. (eds.) BI 2022. Lecture Notes in Computer Science, vol. 12892, pp. 295–304. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15037-1_25

    Chapter  Google Scholar 

  2. Shaffi, N., Hajamohideen, F., Abdesselam, A., Mahmud, M., Subramanian, K.: Ensemble classifiers for a 4-way classification of Alzheimer’s disease. In: Mahmud, M., Ieracitano, C., Kaiser, M.S., Mammone, N., Morabito, F.C. (eds.) AII 2022. Communications in Computer and Information Science, vol. 1724, pp. 219–230. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-24801-6_16

    Chapter  Google Scholar 

  3. Ismail, W.N., Fathimathul Rajeena, P.P., Ali, M.A.S.: A meta-heuristic multi-objective optimization method for Alzheimer’s disease detection based on multi-modal data. Mathematics 11(4), 957 (2023). https://doi.org/10.3390/math11040957

  4. An, N., et al.: Deep ensemble learning for Alzheimer’s disease classification. J. Biomed. Inf. 105, 103411 (2021). https://doi.org/10.1016/j.jbi.2020.103411

    Article  Google Scholar 

  5. Islam, J., Zhang, Y.: A novel deep learning based multi-class classification method for Alzheimer’s disease detection using brain MRI data. In: Zeng, Y., et al. (eds.) Brain Informatics. Lecture Notes in Computer Science, vol. 10654, pp. 213–222. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70772-3_20

    Chapter  Google Scholar 

  6. Bandyopadhyay, A., et al.: Alzheimer’s disease detection using ensemble learning and artificial neural networks. In: Santosh, K., Goyal, A., Aouada, D., Makkar, A., Chiang, Y.Y., Singh, S.K. (eds.) RTIP2R 2022. Communications in Computer and Information Science, vol. 1704, pp. 12–21. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-23599-3_2

    Chapter  Google Scholar 

  7. Salehi, A.W., et al.: A CNN model: earlier diagnosis and classification of Alzheimer disease using MRI. In: 2020 International Conference on Smart Electronics and Communication (ICOSEC) (2020). https://doi.org/10.1109/icosec49089.2020.9215402

  8. Sethi, M., Ahuja, S.: Alzheimer disease classification using MRI images based on transfer learning. In: Innovations in Computational and Computer Techniques, ICACCT-2021 (2022). https://doi.org/10.1063/5.0108540

  9. Liu, C., et al.: Monte Carlo ensemble neural network for the diagnosis of Alzheimer’s disease. Neural Netw. 159, 14–24 (2023). https://doi.org/10.1016/j.neunet.2022.10.032

    Article  Google Scholar 

  10. Savaş, S.: Detecting the stages of Alzheimer’s disease with pre-trained deep learning architectures. Arab. J. Sci. Eng. 47, 2201–2218 (2022). https://doi.org/10.1007/s13369-021-06131-3

    Article  Google Scholar 

  11. Agarwal, D., et al.: Transfer learning for Alzheimer’s disease through neuroimaging biomarkers: a systematic review. Sensors 21(21), 7259 (2021). https://doi.org/10.3390/s21217259

    Article  Google Scholar 

  12. Zhang, Y., Li, H., Zheng, Q.: A comprehensive characterization of hippocampal feature ensemble serves as individualized brain signature for Alzheimer’s disease: deep learning analysis in 3238 participants worldwide. Eur. Radiol. 1–13 (2023). https://doi.org/10.1007/s00330-023-09519-x

  13. Ouchicha, C., et al.: A novel deep convolutional neural network model for Alzheimer’s disease classification using brain MRI. Autom. Control. Comput. Sci. 56(3), 261–271 (2022). https://doi.org/10.3103/s0146411622030063

    Article  Google Scholar 

  14. Kaggle: Alzheimers’ Dataset (2023). www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images

  15. Feng, C., et al.: Deep learning framework for Alzheimer’s disease diagnosis via 3D-CNN and FSBI-LSTM. IEEE Access 7, 63605–63618 (2019). https://doi.org/10.1109/access.2019.2913847

    Article  Google Scholar 

  16. Bangyal, W.H., et al.: Constructing domain ontology for Alzheimer disease using deep learning based approach. Electronics 11(12), 1890 (2022). https://doi.org/10.3390/electronics11121890

    Article  Google Scholar 

  17. Anbarjafari, G.: Introduction to image processing (2023).https://www.sisu.ut.ee/imageprocessing/book/1

  18. GeeksforGeek: Image Resizing using OpenCV (2023), https://www.geeksforgeeks.org/image-resizing-using-opencv-python/

  19. Stakeoverflow: normalization in image processing (2023). https://stackoverflow.com/questions/33610825/normalization-in-image-processing

  20. Ashtari-Majlan, M., Seifi, A., Dehshibi, M.M.: A multi-stream convolutional neural network for classification of progressive MCI in Alzheimer’s disease using structural MRI images. IEEE J. Biomed. Health Inf. 26(8), 3918–3926 (2022). https://doi.org/10.1109/JBHI.2022.3155705

    Article  Google Scholar 

  21. Ji, H., et al.: Early diagnosis of Alzheimer’s disease using deep learning. In: Proceedings of the 2nd International Conference on Control and Computer Vision (2019). https://doi.org/10.1145/3341016.3341024

  22. Francis, A., Pandian, I.A.: The Alzheimer’s disease neuroimaging initiative. Early detection of Alzheimer’s disease using local binary pattern and convolutional neural network. Multimed. Tools Appl. 80, 29585–29600 (2021). https://doi.org/10.1007/s11042-021-11161-y

  23. Warnita, T., Inoue, N., Shinoda, K.: Detecting Alzheimer’s disease using gated convolutional neural network from audio data. arXiv preprint arXiv:1803.11344 (2018). https://doi.org/10.21437/interspeech.2018-1713

  24. Nawaz, A., Anwar, S.M., Liaqat, R., Iqbal, J., Bagci, U., Majid, M.: Deep convolutional neural network based classification of Alzheimer’s disease using MRI data. In: IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, pp. 1–6 (2020). https://doi.org/10.1109/INMIC50486.2020.9318172

  25. Raju, M., Gopi, V.P., Anitha, V.S., et al.: Multi-class diagnosis of Alzheimer’s disease using cascaded three dimensional-convolutional neural network. Phys. Eng. Sci. Med. 43, 1219–1228 (2020). https://doi.org/10.1007/s13246-020-00924-w

    Article  Google Scholar 

  26. AbdulAzeem, Y., Bahgat, W.M., Badawy, M.: A CNN based framework for classification of Alzheimer’s disease. Neural Comput. Appl. 33, 10415–10428 (2021). https://doi.org/10.1007/s00521-021-05799-w

    Article  Google Scholar 

  27. Lanjewar, M.G., Parab, J.S., Shaikh, A.Y.: Development of framework by combining CNN with KNN to detect Alzheimer’s disease using MRI images. Multimed. Tools Appl. 82, 12699–12717 (2023). https://doi.org/10.1007/s11042-022-13935-4

    Article  Google Scholar 

  28. Mahmud, T., Barua, A., Begum, M., Chakma, E., Das, S., Sharmen, N.: An improved framework for reliable cardiovascular disease prediction using hybrid ensemble learning. In 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6. IEEE (2023)

    Google Scholar 

  29. Mahmud, T., et al.: Reason based machine learning approach to detect Bangla abusive social media comments. In: Vasant, P., Weber, G.W., Marmolejo-Saucedo, J.A., Munapo, E., Thomas, J.J. (eds.) ICO 2022. Lecture Notes in Networks and Systems, vol. 569. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19958-5_46

    Chapter  Google Scholar 

  30. Mahmud, T., et al.: A decision concept to support house hunting. Int. J. Adv. Comput. Sci. Appl. 13(10) (2022). https://doi.org/10.14569/ijacsa.2022.0131091

  31. Das, S., et al.: Deep transfer learning-based foot no-ball detection in live cricket match. Comput. Intell. Neurosci. 2398121, 12 (2023). https://doi.org/10.1155/2023/2398121

    Article  Google Scholar 

  32. Hossain, M.S., Habib, I.B., Andersson, K.: A belief rule based expert system to diagnose dengue fever under uncertainty. In: 2017 Computing Conference, pp. 179–186. IEEE (2017)

    Google Scholar 

  33. Mahmud, T., et al.: An optimal learning model for training expert system to detect uterine cancer. Procedia Comput. Sci. 184, 356–363 (2021)

    Article  Google Scholar 

  34. Islam, D., Mahmud, T., Chowdhury, T.: An efficient automated vehicle license plate recognition system under image processing. Indonesian J. Electr. Eng. Comput. Sci. 29(2), 1055–1062 (2023)

    Article  Google Scholar 

  35. Hossain, M.S., Rahaman, S., Kor, A.L., Andersson, K., Pattinson, C.: A belief rule based expert system for datacenter PUE prediction under uncertainty. IEEE Trans. Sustain. Comput. 2(2), 140–153 (2017)

    Article  Google Scholar 

  36. Patwary, M.J.A., Akter, S., Mahmud, T.: An expert system to detect uterine cancer under uncertainty. IOSR J. Comput. Eng. (IOSR-JCE), e-ISSN, 2278–0661 (2014)

    Google Scholar 

  37. Hossain, M.S., Rahaman, S., Mustafa, R., Andersson, K.: A belief rule-based expert system to assess suspicion of acute coronary syndrome (ACS) under uncertainty. Soft. Comput. 22(22), 7571–7586 (2018)

    Article  Google Scholar 

  38. Mahmud, T., Hossain, M.S.: An evidential reasoning-based decision support system to support house hunting. Int. J. Comput. Appl. 57(21), 51–58 (2012)

    Google Scholar 

  39. Mahmud, T., Rahman, K.N., Hossain, M.S.: Evaluation of job offers using the evidential reasoning approach. Glob. J. Comput. Sci. Technol. 13(D2), 35–44 (2013)

    Google Scholar 

  40. Islam, M.M., Mahmud, T., Hossain, M.S.: Belief-rule-based intelligent decision system to select hospital location. Indonesian J. Electr. Eng. Comput. Sci. 1(3), 607–618 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanjim Mahmud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahmud, T. et al. (2023). Exploring Deep Transfer Learning Ensemble for Improved Diagnosis and Classification of Alzheimer’s Disease. In: Liu, F., Zhang, Y., Kuai, H., Stephen, E.P., Wang, H. (eds) Brain Informatics. BI 2023. Lecture Notes in Computer Science(), vol 13974. Springer, Cham. https://doi.org/10.1007/978-3-031-43075-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43075-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43074-9

  • Online ISBN: 978-3-031-43075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics