Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Indexing for MongoDB

  • Conference paper
  • First Online:
New Trends in Database and Information Systems (ADBIS 2023)

Abstract

We present a new method for automated index suggestion for MongoDB, based solely on the queries (called aggregation pipelines), without requiring data or usage information. The solution handles complex aggregations and is suitable for both cloud and standalone databases. We validated the algorithm on TPC-H and showed that all suggested indexes were used. We report on the performance and provide hints for further development of an automated method of index selection. Our algorithm is, to the best of our knowledge, the first query-based solution for automated indexing in MongoDB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/pier4all/mongodb-auto-index.

  2. 2.

    https://www.npmjs.com/package/mongodb-auto-index.

  3. 3.

    https://github.com/antw0n/universal-database-optimizer-evaluation.

  4. 4.

    https://github.com/pier4all/auto-index.

References

  1. pier4all AG (Ltd.): enablerr - the revolutionary business solution (2021). https://www.enablerr.ch/en/

  2. Chaudhuri, S., Narasayya, V.: Index merging. In: ICDE, pp. 296–303. IEEE (1999)

    Google Scholar 

  3. de Espona Pernas, L., Pustulka, E.: Document versioning for MongoDB. In: Chiusano, S., et al. (eds.) New Trends in Database and Information Systems. Communications in Computer and Information Science, vol. 1652, pp. 512–524. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15743-1_47

    Chapter  Google Scholar 

  4. de Espona Pernas, L., Pustulka, E.: MongoDB data versioning performance: local versus Atlas. In: DataPlat. CEUR-WS.org (2023)

    Google Scholar 

  5. Harrison, G., Harrison, M.: MongoDB Performance Tuning: Optimizing MongoDB Databases and their Applications. Apress Berkeley, New York (2021)

    Book  Google Scholar 

  6. Kersten, M.L., Manegold, S.: Cracking the database store. In: CIDR 2005, pp. 213–224 (2005). https://www.cidrdb.org/

  7. Kossmann J., Halfpap S., J.M.S.R.: Magic mirror in my hand, which is the best in the land? An experimental evaluation of index selection algorithms. In: Proceedings of the VLDB, pp. 2382–2395. ACM (2020). https://doi.org/10.14778/3407790.3407832

  8. Kvet, M.: Database index balancing strategy. In: 29th Conference of Open Innovations Association (FRUCT), pp. 214–221 (2021)

    Google Scholar 

  9. Kvet, M.: Relational data index consolidation. In: 28th Conference of Open Innovations Association (FRUCT), pp. 215–221 (2021)

    Google Scholar 

  10. Li, G., et al.: openGauss: an autonomous database system. Proc. VLDB 14(12), 3028–3042 (2021)

    Article  Google Scholar 

  11. Llano-Ríos, T.F., Khalefa, M., Badia, A.: Experimental comparison of relational and NoSQL document systems: the case of decision support. In: Nambiar, R., Poess, M. (eds.) TPCTC 2020. LNCS, vol. 12752, pp. 58–74. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84924-5_5

    Chapter  Google Scholar 

  12. Lum, V.Y.: On the selection of secondary indexes. In: Proceedings of the 1974 Annual ACM Conference - Volume 2, ACM ’74, p. 736. ACM (1974)

    Google Scholar 

  13. MongoDB, I.: MongoDB (2021). https://www.mongodb.com

  14. Poess, M., Floyd, C.: New TPC benchmarks for decision support and web commerce. SIGMOD Rec. 29(4), 64–71 (2000)

    Article  Google Scholar 

  15. Pustulka, E., von Arx, S., de Espona, L.: Building a NoSQL ERP. In: Yang, X.S., Sherratt, S., Dey, N., Joshi, A. (eds.) Proceedings of Seventh International Congress on Information and Communication Technology. Lecture Notes in Networks and Systems, vol. 448, pp. 671–680. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-1610-6_59

    Chapter  Google Scholar 

  16. TPC: TPC BenchmarkTM H Standard Specification Revision 3.0.0. TPC (2022). https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf

  17. Vitter, J.S.: External memory algorithms and data structures: dealing with massive data. ACM Comput. Surv. 33(2), 209–271 (2001)

    Article  Google Scholar 

  18. Wang, J., Trummer, I., Basu, D.: Demonstrating udo: A unified approach for optimizing transaction code, physical design, and system parameters via reinforcement learning. In: Proceedings of the International Conference on Management of Data, pp. 2794–2797 (2021)

    Google Scholar 

  19. Zardbani, F., Afshani, P., Karras, P.: Revisiting the theory and practice of database cracking. In: EDBT 2020, pp. 415–418. OpenProceedings.org (2020)

    Google Scholar 

Download references

Acknowledgements

We acknowledge funding from www.innosuisse.ch, Grant No. 44824.1 IP-ICT and support from project 030TUKE-4/2023 from the Cultural and Education Grant Agency of the Slovak Ministry of Education. We thank Saverio Damiani and Anton Lorvi for their work and Prof. Christian Dolfus (HSLU) for providing the server. We have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ela Pustulka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Espona Pernas, L., Vichalkovski, A., Steingartner, W., Pustulka, E. (2023). Automatic Indexing for MongoDB. In: Abelló, A., et al. New Trends in Database and Information Systems. ADBIS 2023. Communications in Computer and Information Science, vol 1850. Springer, Cham. https://doi.org/10.1007/978-3-031-42941-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42941-5_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42940-8

  • Online ISBN: 978-3-031-42941-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics