Abstract
Many problems for formal verification and artificial intelligence rely on advanced reasoning technologies in the background, often in the form of SAT or QBF solvers. Such solvers are sophisticated and highly tuned pieces of software, often too complex to be verified themselves. Now the question arises how one can one be sure that the result of such a solver is correct, especially when its result is critical for proving the correctness of another system. If a SAT solver, a tool for deciding a propositional formula, returns satisfiable, then it also returns a model which is easy to check. If the answer is unsatisfiable, the situation is more complicated. And so it is for true and false quantified Boolean formulas (QBFs), which extend propositional logic by quantifiers over the Boolean variables. To increase the trust in a solving result, modern solvers are expected to produce certificates that can independently and efficiently be checked. In this paper, we give an overview of the state of the art on validating the results of SAT and QBF solvers based on certification.
Supported by the LIT AI Lab Funded by the State of Upper Austria
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
This example is inspired by an example presented in [10]
References
Artho, C., Biere, A., Seidl, M.: Model-based testing for verification back-ends. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 39–55. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38916-0_3
Ayari, A., Basin, D.: Qubos: deciding quantified Boolean logic using propositional satisfiability solvers. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 187–201. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36126-X_12
Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)
Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_12
Beyersdorff, O.: Proof complexity of quantified boolean logic-a survey. In: Mathematics for Computation (M4C), pp. 397–440. World Scientific (2023)
Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44465-8_8
Beyersdorff, O., Chew, L., Janota, M.: New resolution-based QBF calculi and their proof complexity. ACM Trans. Comput. Theory 11(4), 26:1–26:42 (2019)
Beyersdorff, O., Janota, M., Lonsing, F., Seidl, M.: Quantified boolean formulas. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, 2nd edn. Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 1177–1221. IOS Press (2021)
Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005). https://doi.org/10.1007/11527695_5
Biere, A.: SAT. Tutorial at the 5th Indian SAT and SMT Winter School (2020)
Biere, A., Fleury, M.: Gimsatul, IsaSAT and Kissat entering the SAT competition 2022. In: Balyo, T., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Procedings of SAT Competition 2022 - Solver and Benchmark Descriptions. Department of Computer Science Series of Publications B, vol. B-2022-1, pp. 10–11. University of Helsinki (2022)
Bloem, R., Braud-Santoni, N., Hadzic, V., Egly, U., Lonsing, F., Seidl, M.: Two SAT solvers for solving quantified boolean formulas with an arbitrary number of quantifier alternations. Formal Methods Syst. Des. 57(2), 157–177 (2021)
Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 44–57. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_6
Bryant, R.E., Heule, M.J.H.: Dual proof generation for quantified boolean formulas with a BDD-based solver. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 433–449. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_25
Buss, S., Nordström, J.: Proof complexity and SAT solving. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, 2nd edn. Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 233–350. IOS Press (2021)
Buss, S., Thapen, N.: DRAT proofs, propagation redundancy, and extended resolution. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 71–89. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_5
Chew, L., Clymo, J.: The equivalences of refutational QRAT. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 100–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_7
Chew, L., Heule, M.J.H.: Relating existing powerful proof systems for QBF. In: Meel, K.S., Strichman, O. (eds.) Proceedings of the 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). LIPIcs, vol. 236, pp. 10:1–10:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)
Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.: Efficient certified RAT verification. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5_14
Gelder, A.V.: Extracting (easily) checkable proofs from a satisfiability solver that employs both preorder and postorder resolution. In: International Symposium on Artificial Intelligence and Mathematics, (AI &M 2002) (2002)
Gelder, A.V.: Verifying RUP proofs of propositional unsatisfiability. In: Proceedings of the International Symposium on Artificial Intelligence and Mathematics (ISAIM 2008) (2008)
Gelder, A.: Contributions to the theory of practical quantified boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_47
Giunchiglia, E., Narizzano, M., Tacchella, A.: Learning for quantified boolean logic satisfiability. In: Dechter, R., Kearns, M.J., Sutton, R.S. (eds.) Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intelligence (AAAI/IAAI 2002), pp. 649–654. AAAI Press/The MIT Press (2002)
Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Proceedings of the 2003 Design, Automation and Test in Europe Conference and Exposition (DATE 2003), pp. 10886–10891. IEEE Computer Society (2003)
Goultiaeva, A., Gelder, A.V., Bacchus, F.: A uniform approach for generating proofs and strategies for both true and false QBF formulas. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2012), pp. 546–553. IJCAI/AAAI (2011)
Hadzic, V., Bloem, R., Shukla, A., Seidl, M.: FERPModels: a certification framework for expansion-based QBF solving. In: Proceedings of the 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2022), pp. 80–83 (2022)
Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015)
Heule, M.J.H., Hunt, W.A., Wetzler, N.: Verifying refutations with extended resolution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 345–359. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_24
Heule, M.J.H., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 91–106. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_7
Heule, M.J.H.: Proofs of unsatisfiability. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, 2nd edn., Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 635–668. IOS Press (2021)
Heule, M.J.H., Kiesl, B., Biere, A.: Encoding redundancy for satisfaction-driven clause learning. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 41–58. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_3
Heule, M.J.H., Kullmann, O.: The science of brute force. Commun. ACM 60(8), 70–79 (2017)
Heule, M.J.H., Seidl, M., Biere, A.: Solution validation and extraction for QBF preprocessing. J. Autom. Reason. 58(1), 97–125 (2017)
Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–25 (2016)
Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 230–244. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0_19
Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus q-resolution. Theor. Comput. Sci. 577, 25–42 (2015)
Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_28
Kauers, M., Seidl, M.: Short proofs for some symmetric quantified boolean formulas. Inf. Process. Lett. 140, 4–7 (2018)
Kauers, M., Seidl, M.: Symmetries of quantified boolean formulas. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 199–216. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_13
Kiesl, B., Heule, M.J.H., Seidl, M.: A little blocked literal goes a long way. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 281–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_18
Kiesl, B., Rebola-Pardo, A., Heule, M.J.H., Biere, A.: Simulating strong practical proof systems with extended resolution. J. Autom. Reason. 64(7), 1247–1267 (2020)
Kiesl, B., Seidl, M.: QRAT polynomially simulates \(\forall \text{-Exp+Res }\). In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 193–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_13
Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Inf. Comput. 117(1), 12–18 (1995)
Knuth, D.: Handbook of Satisfiability (Quote on Backcover) (2021)
Kullmann, O.: Fundaments of branching heuristics. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, 2nd edn. Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 351–390. IOS Press (2021)
Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason. 64(3), 513–532 (2020)
Letz, R.: Lemma and model caching in decision procedures for quantified boolean formulas. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 160–175. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45616-3_12
Lonsing, F., Biere, A.: Nenofex: expanding NNF for QBF solving. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-7_19
Lonsing, F., Biere, A.: Integrating Dependency Schemes in Search-Based QBF Solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_14
Lonsing, F., Seidl, M., Gelder, A.V.: The QBF gallery: behind the scenes. Artif. Intell. 237, 92–114 (2016)
Manthey, N., Lindauer, M.: SpyBug: automated bug detection in the configuration space of SAT Solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 554–561. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_36
Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based certificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_33
Peitl, T., Slivovsky, F., Szeider, S.: Polynomial-time validation of QCDCL certificates. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 253–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_16
Peitl, T., Slivovsky, F., Szeider, S.: Long-distance q-resolution with dependency schemes. J. Autom. Reason. 63(1), 127–155 (2019)
Pulina, L., Seidl, M.: The 2016 and 2017 QBF solvers evaluations (QBFEVAL’16 and QBFEVAL’17). Artif. Intell. 274, 224–248 (2019)
Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Kaivola, R., Wahl, T. (eds.) Formal Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA, 27–30 September 2015, pp. 136–143. IEEE (2015)
Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)
Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. J. Autom. Reason. 42(1), 77–97 (2009)
Schlaipfer, M., Slivovsky, F., Weissenbacher, G., Zuleger, F.: Multi-linear strategy extraction for QBF expansion proofs via local soundness. In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 429–446. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51825-7_30
Shukla, A., Biere, A., Pulina, L., Seidl, M.: A survey on applications of quantified boolean formulas. In: Proceedings of the 31st IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2019), pp. 78–84. IEEE (2019)
Shukla, A., Slivovsky, F., Szeider, S.: Short Q-resolution proofs with homomorphisms. In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 412–428. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51825-7_29
Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: Rutenbar, R.A., Otten, R.H.J.M. (eds.) Proceedings of the 1996 IEEE/ACM International Conference on Computer-Aided Design (ICCAD 1996), pp. 220–227. IEEE Computer Society/ACM (1996)
Tentrup, L.: On expansion and resolution in CEGAR based QBF solving. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 475–494. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_25
Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)
Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability solver. In: Pileggi, L.T., Kuehlmann, A. (eds.) Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided Design (ICCAD 2002), pp. 442–449. ACM / IEEE Computer Society (2002)
Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46135-3_14
Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In: Proceedings of the 2003 Design, Automation and Test in Europe Conference and Exposition (DATE 2003), pp. 10880–10885. IEEE Computer Society (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Seidl, M. (2023). Never Trust Your Solver: Certification for SAT and QBF. In: Dubois, C., Kerber, M. (eds) Intelligent Computer Mathematics. CICM 2023. Lecture Notes in Computer Science(), vol 14101. Springer, Cham. https://doi.org/10.1007/978-3-031-42753-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-42753-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42752-7
Online ISBN: 978-3-031-42753-4
eBook Packages: Computer ScienceComputer Science (R0)