Abstract
Social Media Artificial Intelligence algorithms provide users with engaging and personalized content. Yet, the personalization of algorithms may have a negative impact on users who lack AI literacy. The limited understanding of SM algorithms among the population suggest that adolescents are more likely to place blind trust in the information they consume, exposing them to negative consequences (misinformation, filter bubbles and echo chambers). We therefore propose an intervention with a narrative scripts approach to raise awareness of AI algorithms in SM. To foster an authentic learning experience and question adolescents’ trust in AI, we deploy a low-accuracy AI image classifier. A quasi-experimental study was conducted among 144 high-school students in Barcelona, Spain. The results show that the narrative scripts intervention improved students’ awareness of SM algorithms and shaped more critical attitudes towards them. A comparison of students’ choices between human predictions and those produced by a low-accuracy AI classifier shows a lack of AI overdependence. Information about predictions’ source did not affect students’ trust or learning about AI. These findings contribute towards SM algorithms education and share insight into the effect of deploying low-accuracy detectors in learning technology interventions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine Bias *. Auerbach Publications, Mar 2022. https://doi.org/10.1201/9781003278290-37
Banker, S., Khetani, S.: Algorithm overdependence: how the use of algorithmic recommendation systems can increase risks to consumer well-being. J. Public Policy Marketing 38, 500–515 (2019). https://doi.org/10.1177/0743915619858057
Burbach, L., Halbach, P., Ziefle, M., Calero Valdez, A.: Bubble trouble: strategies against filter bubbles in online social networks. In: Duffy, V.G. (ed.) HCII 2019. LNCS, vol. 11582, pp. 441–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22219-2_33
Cai, C.J., Jongejan, J., Holbrook, J.: The effects of example-based explanations in a machine learning interface. In: International Conference on Intelligent User Interfaces, Proceedings IUI Part F147615, 258–262 (2019). https://doi.org/10.1145/3301275.3302289
Cataldo, I., et al.: Fitspiration on social media: body-image and other psychopathological risks among young adults. A narrative review. Emerging Trends Drugs Addictions Health 1, 100010 (2021). https://doi.org/10.1016/j.etdah.2021.100010
Coyne, S.M., et al.: Contributions of mainstream sexual media exposure to sexual attitudes, perceived peer norms, and sexual behavior: a meta-analysis. J. Adolescent Health 64, 430–436 (2019). https://doi.org/10.1016/j.jadohealth.2018.11.016
Dantcheva, A., Bremond, F., Bilinski, P.: Show me your face and i will tell you your height, weight and body mass index. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3555–3560 (2018). https://doi.org/10.1109/ICPR.2018.8546159
Eg, R., Özlem Demirkol Tønnesen, Tennfjord, M.K.: A scoping review of personalized user experiences on social media: the interplay between algorithms and human factors. Comput. Hum. Behav. Rep. 9, 100253 (2023). https://doi.org/10.1016/j.chbr.2022.100253
Fernandes, B., Biswas, U.N., Tan-Mansukhani, R., Vallejo, A., Essau, C.A.: The impact of covid-19 lockdown on internet use and escapism in adolescents. Revista de Psicologia Clinica con Ninos y Adolescentes 7, 59–65 (2020). https://doi.org/10.21134/RPCNA.2020.MON.2056
Fioravanti, G., Benucci, S.B., Ceragioli, G., Casale, S.: How the exposure to beauty ideals on social networking sites influences body image: A systematic review of experimental studies. Adolescent Res. Rev. 7, 419–458 (2022). https://doi.org/10.1007/s40894-022-00179-4
Gran, A.B., Booth, P., Bucher, T.: To be or not to be algorithm aware: a question of a new digital divide? Inf. Commun. Soc. 24, 1779–1796 (2021). https://doi.org/10.1080/1369118X.2020.1736124
Hamilton, K., Karahalios, K., Sandvig, C., Eslami, M.: A path to understanding the effects of algorithm awareness. In: CHI ’14 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2014, pp. 631–642. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2559206.2578883,https://doi.org/10.1145/2559206.2578883
Haritosh, A., Gupta, A., Chahal, E.S., Misra, A., Chandra, S.: A novel method to estimate height, weight and body mass index from face images. In: 2019 Twelfth International Conference on Contemporary Computing (IC3), pp. 1–6 (2019). https://doi.org/10.1109/IC3.2019.8844872
Harriger, J.A., Evans, J.A., Thompson, J.K., Tylka, T.L.: The dangers of the rabbit hole: reflections on social media as a portal into a distorted world of edited bodies and eating disorder risk and the role of algorithms. Body Image 41, 292–297 (2022). https://doi.org/10.1016/j.bodyim.2022.03.007
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification (2015)
Hernández-Leo, D., Theophilou, E., Lobo, R., Sánchez-Reina, R., Ognibene, D.: Narrative scripts embedded in social media towards empowering digital and self-protection skills. In: De Laet, T., Klemke, R., Alario-Hoyos, C., Hilliger, I., Ortega-Arranz, A. (eds.) EC-TEL 2021. LNCS, vol. 12884, pp. 394–398. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86436-1_42
Kandlhofer, M., Steinbauer, G., Hirschmugl-Gaisch, S., Huber, P.: Artificial intelligence and computer science in education: from kindergarten to university. In: 2016 IEEE Frontiers in Education Conference (FIE), pp. 1–9 (2016). https://doi.org/10.1109/FIE.2016.7757570
Kozyreva, A., Lewandowsky, S., Hertwig, R.: Citizens versus the internet: confronting digital challenges with cognitive tools. Psychological Sci. Public Interest 21, 103–156 (2020). https://doi.org/10.1177/1529100620946707
Lazer, D.M.J., et al.: The science of fake news. Science 359(6380), 1094–1096 (2018). https://doi.org/10.1126/science.aao2998
Lee, E., Karimi, F., Wagner, C., Jo, H.H., Strohmaier, M., Galesic, M.: Homophily and minority-group size explain perception biases in social networks. Nature Hum. Behav. 3, 1078–1087 (2019). https://doi.org/10.1038/s41562-019-0677-4
Lee, I., Ali, S., Zhang, H., DiPaola, D., Breazeal, C.: Developing middle school students’ ai literacy. In: Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, SIGCSE 2021, pp. 191–197. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3408877.3432513D
Lobo-Quintero, R., Sánchez-Reina, R., Theophilou, E., Hernández-Leo, D.: Intrinsic motivation for social media literacy, a look into the narrative scripts. In: Fulantelli, G., Burgos, D., Casalino, G., Cimitile, M., Lo Bosco, G., Taibi, D. (eds.) Higher Education Learning Methodologies and Technologies Online, pp. 419–432. Springer, Cham (2023)
Lomonaco, F., Ognibene, D., Trianni, V., Taibi, D.: A game-based educational experience to increase awareness about the threats of social media filter bubbles and echo chambers inspired by “wisdom of the crowd”: preliminary results. In: 4th International Conference on Higher Education Learning Methodologies and Technologies Online (2022)
Mcknight, D.H., Carter, M., Thatcher, J.B., Clay, P.F.: Trust in a specific technology. ACM Trans. Manage. Inf. Syst. 2, 1–25 (2011). https://doi.org/10.1145/1985347.1985353
McKnight, D.H., Choudhury, V., Kacmar, C.: Developing and validating trust measures for e-commerce: an integrative typology. Inf. Syst. Res. 13, 334–359 (2002). https://doi.org/10.1287/isre.13.3.334.81
Ognibene, D., et al.: Moving beyond benchmarks and competitions: towards addressing social media challenges in an educational context. Datenbank-Spektrum, February 2023. https://doi.org/10.1007/s13222-023-00436-3
Okkonen, J., Kotilainen, S.: Minors and Artificial Intelligence - Implications to Media Literacy, vol. 918. Springer (2019). https://doi.org/10.1007/978-3-030-11890-7_82
Pagano, T.P., et al.: Bias and unfairness in machine learning models: a systematic literature review (2022)
Rodríguez-Rementería, A., Sanchez-Reina, R., Theophilou, E., Hernández-Leo, D.: Actitudes sobre la edición de imágenes en redes sociales y su etiquetado: un posible método preventivo (2022)
Serengil, S.I., Ozpinar, A.: Lightface: a hybrid deep face recognition framework. In: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 1–5 (2020). https://doi.org/10.1109/ASYU50717.2020.9259802
Serholt, S., et al.: The case of classroom robots: teachers’ deliberations on the ethical tensions. AI Soc. 32, 613–631 (2017). https://doi.org/10.1007/S00146-016-0667-2
Sherlock, M., Wagstaff, D.L.: Exploring the relationship between frequency of Instagram use, exposure to idealized images, and psychological well-being in women. Psychol. Popular Media Culture 8, 482–490 (10 2019). https://doi.org/10.1037/ppm0000182
Su, J., Ng, D.T.K., Chu, S.K.W.: Artificial intelligence (ai) literacy in early childhood education: the challenges and opportunities. Comput. Educ. Artif. Intell. 4, 100124 (2023). https://doi.org/10.1016/j.caeai.2023.100124
Swart, J.: Experiencing algorithms: How young people understand, feel about, and engage with algorithmic news selection on social media. Social Media + Society 7, 205630512110088 (2021). https://doi.org/10.1177/20563051211008828
Sánchez-Reina, J.R., Theophilou, E., Hernández-Leo, D., Medina-Bravo, P.: The power of beauty or the tyranny of algorithms. How do teens understand body image on instagram? Editorial Dykinson S.L (2021)
Valtonen, T., Tedre, M., Mäkitalo, K., Vartiainen, H.: Media literacy education in the age of machine learning. J. Media Literacy Educ. 11, September 2019. https://doi.org/10.23860/JMLE-2019-11-2-2
Vogels, E.A., Gelles-Watnick, R., Massarat, N.: Teens, social media and technology 2022. Tech. rep, Pew Research Center (2022)
Warwick, K., Shah, H.: Can machines think? a report on turing test experiments at the royal society. J. Exp. Theoretical Artif. Intell. 28, 989–1007 (2016). https://doi.org/10.1080/0952813X.2015.1055826
Zhang, G., Chong, L., Kotovsky, K., Cagan, J.: Trust in an AI versus a human teammate: the effects of teammate identity and performance on human-ai cooperation. Comput. Hum. Behav. 139, 107536 (2023). https://doi.org/10.1016/j.chb.2022.107536
Žmavc, M., Šorgo, A., Gabrovec, B., Crnkovic, N., Cesar, K., Špela Selak: the protective role of resilience in the development of social media addiction in tertiary students and psychometric properties of the slovenian bergen social media addiction scale (bsmas). Int. J. Environ. Res. Public Health 19, 13178 (2022). https://doi.org/10.3390/ijerph192013178
Acknowledgement
This work has been partially funded by the Volkswagen Foundation (COURAGE project, no. 95567). TIDE-UPF also acknowledges the support by AEI/10.13039/ 501100011033 (PID2020-112584RB-C33, MDM-2015-0502), ICREA under the ICREA Academia programme (D. Hernández-Leo, Serra Hunter) and the Department of Research and Universities of the Government of Catalonia (SGR 00930).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Theophilou, E., Lomonaco, F., Donabauer, G., Ognibene, D., Sánchez-Reina, R.J., Hernàndez-Leo, D. (2023). AI and Narrative Scripts to Educate Adolescents About Social Media Algorithms: Insights About AI Overdependence, Trust and Awareness. In: Viberg, O., Jivet, I., Muñoz-Merino, P., Perifanou, M., Papathoma, T. (eds) Responsive and Sustainable Educational Futures. EC-TEL 2023. Lecture Notes in Computer Science, vol 14200. Springer, Cham. https://doi.org/10.1007/978-3-031-42682-7_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-42682-7_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42681-0
Online ISBN: 978-3-031-42682-7
eBook Packages: Computer ScienceComputer Science (R0)