Nothing Special   »   [go: up one dir, main page]

Skip to main content

AI and Narrative Scripts to Educate Adolescents About Social Media Algorithms: Insights About AI Overdependence, Trust and Awareness

  • Conference paper
  • First Online:
Responsive and Sustainable Educational Futures (EC-TEL 2023)

Abstract

Social Media Artificial Intelligence algorithms provide users with engaging and personalized content. Yet, the personalization of algorithms may have a negative impact on users who lack AI literacy. The limited understanding of SM algorithms among the population suggest that adolescents are more likely to place blind trust in the information they consume, exposing them to negative consequences (misinformation, filter bubbles and echo chambers). We therefore propose an intervention with a narrative scripts approach to raise awareness of AI algorithms in SM. To foster an authentic learning experience and question adolescents’ trust in AI, we deploy a low-accuracy AI image classifier. A quasi-experimental study was conducted among 144 high-school students in Barcelona, Spain. The results show that the narrative scripts intervention improved students’ awareness of SM algorithms and shaped more critical attitudes towards them. A comparison of students’ choices between human predictions and those produced by a low-accuracy AI classifier shows a lack of AI overdependence. Information about predictions’ source did not affect students’ trust or learning about AI. These findings contribute towards SM algorithms education and share insight into the effect of deploying low-accuracy detectors in learning technology interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine Bias *. Auerbach Publications, Mar 2022. https://doi.org/10.1201/9781003278290-37

  2. Banker, S., Khetani, S.: Algorithm overdependence: how the use of algorithmic recommendation systems can increase risks to consumer well-being. J. Public Policy Marketing 38, 500–515 (2019). https://doi.org/10.1177/0743915619858057

  3. Burbach, L., Halbach, P., Ziefle, M., Calero Valdez, A.: Bubble trouble: strategies against filter bubbles in online social networks. In: Duffy, V.G. (ed.) HCII 2019. LNCS, vol. 11582, pp. 441–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22219-2_33

    Chapter  Google Scholar 

  4. Cai, C.J., Jongejan, J., Holbrook, J.: The effects of example-based explanations in a machine learning interface. In: International Conference on Intelligent User Interfaces, Proceedings IUI Part F147615, 258–262 (2019). https://doi.org/10.1145/3301275.3302289

  5. Cataldo, I., et al.: Fitspiration on social media: body-image and other psychopathological risks among young adults. A narrative review. Emerging Trends Drugs Addictions Health 1, 100010 (2021). https://doi.org/10.1016/j.etdah.2021.100010

  6. Coyne, S.M., et al.: Contributions of mainstream sexual media exposure to sexual attitudes, perceived peer norms, and sexual behavior: a meta-analysis. J. Adolescent Health 64, 430–436 (2019). https://doi.org/10.1016/j.jadohealth.2018.11.016

  7. Dantcheva, A., Bremond, F., Bilinski, P.: Show me your face and i will tell you your height, weight and body mass index. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3555–3560 (2018). https://doi.org/10.1109/ICPR.2018.8546159

  8. Eg, R., Özlem Demirkol Tønnesen, Tennfjord, M.K.: A scoping review of personalized user experiences on social media: the interplay between algorithms and human factors. Comput. Hum. Behav. Rep. 9, 100253 (2023). https://doi.org/10.1016/j.chbr.2022.100253

  9. Fernandes, B., Biswas, U.N., Tan-Mansukhani, R., Vallejo, A., Essau, C.A.: The impact of covid-19 lockdown on internet use and escapism in adolescents. Revista de Psicologia Clinica con Ninos y Adolescentes 7, 59–65 (2020). https://doi.org/10.21134/RPCNA.2020.MON.2056

  10. Fioravanti, G., Benucci, S.B., Ceragioli, G., Casale, S.: How the exposure to beauty ideals on social networking sites influences body image: A systematic review of experimental studies. Adolescent Res. Rev. 7, 419–458 (2022). https://doi.org/10.1007/s40894-022-00179-4

  11. Gran, A.B., Booth, P., Bucher, T.: To be or not to be algorithm aware: a question of a new digital divide? Inf. Commun. Soc. 24, 1779–1796 (2021). https://doi.org/10.1080/1369118X.2020.1736124

  12. Hamilton, K., Karahalios, K., Sandvig, C., Eslami, M.: A path to understanding the effects of algorithm awareness. In: CHI ’14 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2014, pp. 631–642. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2559206.2578883,https://doi.org/10.1145/2559206.2578883

  13. Haritosh, A., Gupta, A., Chahal, E.S., Misra, A., Chandra, S.: A novel method to estimate height, weight and body mass index from face images. In: 2019 Twelfth International Conference on Contemporary Computing (IC3), pp. 1–6 (2019). https://doi.org/10.1109/IC3.2019.8844872

  14. Harriger, J.A., Evans, J.A., Thompson, J.K., Tylka, T.L.: The dangers of the rabbit hole: reflections on social media as a portal into a distorted world of edited bodies and eating disorder risk and the role of algorithms. Body Image 41, 292–297 (2022). https://doi.org/10.1016/j.bodyim.2022.03.007

    Article  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification (2015)

    Google Scholar 

  16. Hernández-Leo, D., Theophilou, E., Lobo, R., Sánchez-Reina, R., Ognibene, D.: Narrative scripts embedded in social media towards empowering digital and self-protection skills. In: De Laet, T., Klemke, R., Alario-Hoyos, C., Hilliger, I., Ortega-Arranz, A. (eds.) EC-TEL 2021. LNCS, vol. 12884, pp. 394–398. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86436-1_42

    Chapter  Google Scholar 

  17. Kandlhofer, M., Steinbauer, G., Hirschmugl-Gaisch, S., Huber, P.: Artificial intelligence and computer science in education: from kindergarten to university. In: 2016 IEEE Frontiers in Education Conference (FIE), pp. 1–9 (2016). https://doi.org/10.1109/FIE.2016.7757570

  18. Kozyreva, A., Lewandowsky, S., Hertwig, R.: Citizens versus the internet: confronting digital challenges with cognitive tools. Psychological Sci. Public Interest 21, 103–156 (2020). https://doi.org/10.1177/1529100620946707

  19. Lazer, D.M.J., et al.: The science of fake news. Science 359(6380), 1094–1096 (2018). https://doi.org/10.1126/science.aao2998

    Article  Google Scholar 

  20. Lee, E., Karimi, F., Wagner, C., Jo, H.H., Strohmaier, M., Galesic, M.: Homophily and minority-group size explain perception biases in social networks. Nature Hum. Behav. 3, 1078–1087 (2019). https://doi.org/10.1038/s41562-019-0677-4

  21. Lee, I., Ali, S., Zhang, H., DiPaola, D., Breazeal, C.: Developing middle school students’ ai literacy. In: Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, SIGCSE 2021, pp. 191–197. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3408877.3432513D

  22. Lobo-Quintero, R., Sánchez-Reina, R., Theophilou, E., Hernández-Leo, D.: Intrinsic motivation for social media literacy, a look into the narrative scripts. In: Fulantelli, G., Burgos, D., Casalino, G., Cimitile, M., Lo Bosco, G., Taibi, D. (eds.) Higher Education Learning Methodologies and Technologies Online, pp. 419–432. Springer, Cham (2023)

    Chapter  Google Scholar 

  23. Lomonaco, F., Ognibene, D., Trianni, V., Taibi, D.: A game-based educational experience to increase awareness about the threats of social media filter bubbles and echo chambers inspired by “wisdom of the crowd”: preliminary results. In: 4th International Conference on Higher Education Learning Methodologies and Technologies Online (2022)

    Google Scholar 

  24. Mcknight, D.H., Carter, M., Thatcher, J.B., Clay, P.F.: Trust in a specific technology. ACM Trans. Manage. Inf. Syst. 2, 1–25 (2011). https://doi.org/10.1145/1985347.1985353

  25. McKnight, D.H., Choudhury, V., Kacmar, C.: Developing and validating trust measures for e-commerce: an integrative typology. Inf. Syst. Res. 13, 334–359 (2002). https://doi.org/10.1287/isre.13.3.334.81

  26. Ognibene, D., et al.: Moving beyond benchmarks and competitions: towards addressing social media challenges in an educational context. Datenbank-Spektrum, February 2023. https://doi.org/10.1007/s13222-023-00436-3

  27. Okkonen, J., Kotilainen, S.: Minors and Artificial Intelligence - Implications to Media Literacy, vol. 918. Springer (2019). https://doi.org/10.1007/978-3-030-11890-7_82

  28. Pagano, T.P., et al.: Bias and unfairness in machine learning models: a systematic literature review (2022)

    Google Scholar 

  29. Rodríguez-Rementería, A., Sanchez-Reina, R., Theophilou, E., Hernández-Leo, D.: Actitudes sobre la edición de imágenes en redes sociales y su etiquetado: un posible método preventivo (2022)

    Google Scholar 

  30. Serengil, S.I., Ozpinar, A.: Lightface: a hybrid deep face recognition framework. In: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 1–5 (2020). https://doi.org/10.1109/ASYU50717.2020.9259802

  31. Serholt, S., et al.: The case of classroom robots: teachers’ deliberations on the ethical tensions. AI Soc. 32, 613–631 (2017). https://doi.org/10.1007/S00146-016-0667-2

  32. Sherlock, M., Wagstaff, D.L.: Exploring the relationship between frequency of Instagram use, exposure to idealized images, and psychological well-being in women. Psychol. Popular Media Culture 8, 482–490 (10 2019). https://doi.org/10.1037/ppm0000182

  33. Su, J., Ng, D.T.K., Chu, S.K.W.: Artificial intelligence (ai) literacy in early childhood education: the challenges and opportunities. Comput. Educ. Artif. Intell. 4, 100124 (2023). https://doi.org/10.1016/j.caeai.2023.100124

  34. Swart, J.: Experiencing algorithms: How young people understand, feel about, and engage with algorithmic news selection on social media. Social Media + Society 7, 205630512110088 (2021). https://doi.org/10.1177/20563051211008828

  35. Sánchez-Reina, J.R., Theophilou, E., Hernández-Leo, D., Medina-Bravo, P.: The power of beauty or the tyranny of algorithms. How do teens understand body image on instagram? Editorial Dykinson S.L (2021)

    Google Scholar 

  36. Valtonen, T., Tedre, M., Mäkitalo, K., Vartiainen, H.: Media literacy education in the age of machine learning. J. Media Literacy Educ. 11, September 2019. https://doi.org/10.23860/JMLE-2019-11-2-2

  37. Vogels, E.A., Gelles-Watnick, R., Massarat, N.: Teens, social media and technology 2022. Tech. rep, Pew Research Center (2022)

    Google Scholar 

  38. Warwick, K., Shah, H.: Can machines think? a report on turing test experiments at the royal society. J. Exp. Theoretical Artif. Intell. 28, 989–1007 (2016). https://doi.org/10.1080/0952813X.2015.1055826

  39. Zhang, G., Chong, L., Kotovsky, K., Cagan, J.: Trust in an AI versus a human teammate: the effects of teammate identity and performance on human-ai cooperation. Comput. Hum. Behav. 139, 107536 (2023). https://doi.org/10.1016/j.chb.2022.107536

  40. Žmavc, M., Šorgo, A., Gabrovec, B., Crnkovic, N., Cesar, K., Špela Selak: the protective role of resilience in the development of social media addiction in tertiary students and psychometric properties of the slovenian bergen social media addiction scale (bsmas). Int. J. Environ. Res. Public Health 19, 13178 (2022). https://doi.org/10.3390/ijerph192013178

Download references

Acknowledgement

This work has been partially funded by the Volkswagen Foundation (COURAGE project, no. 95567). TIDE-UPF also acknowledges the support by AEI/10.13039/ 501100011033 (PID2020-112584RB-C33, MDM-2015-0502), ICREA under the ICREA Academia programme (D. Hernández-Leo, Serra Hunter) and the Department of Research and Universities of the Government of Catalonia (SGR 00930).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Theophilou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Theophilou, E., Lomonaco, F., Donabauer, G., Ognibene, D., Sánchez-Reina, R.J., Hernàndez-Leo, D. (2023). AI and Narrative Scripts to Educate Adolescents About Social Media Algorithms: Insights About AI Overdependence, Trust and Awareness. In: Viberg, O., Jivet, I., Muñoz-Merino, P., Perifanou, M., Papathoma, T. (eds) Responsive and Sustainable Educational Futures. EC-TEL 2023. Lecture Notes in Computer Science, vol 14200. Springer, Cham. https://doi.org/10.1007/978-3-031-42682-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42682-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42681-0

  • Online ISBN: 978-3-031-42682-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics