Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards Detecting Freezing of Gait Events Using Wearable Sensors and Genetic Programming

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2023)

Abstract

Freezing of gait (FOG) is one of the most common manifestations of advanced Parkinson’s disease. It represents a sudden interruption of walking forward associated with an increased risk of falling and poor quality of life. Evolutionary algorithms, such as genetic programming (GP), have been effectively applied in modelling many real-world application domains and diseases occurrence. In this paper, we explore the application of GP for the early detection of FOG episodes in patients with Parkinson’s disease. The study involves the analysis of FOG by exploiting the statistical and time-domain features from wearable sensors, followed by automatic feature selection and model construction using GP. Efforts to use data from wearable sensors suffer from challenges caused by imbalanced class labels, which affect the task of GP model development. Thus, the cost-sensitive approach is incorporated into GP to tackle the imbalanced problem. The standard metrics, such as sensitivity, specificity, and F1-score, were used for testing the final model. With 30 repetitions, the average performance of the GP model has shown promising results in detecting the occurrence of FOG episodes in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harrell, F.E.: Multivariable modeling strategies. In: Regression Modeling Strategies. SSS, pp. 63–102. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19425-7_4

    Chapter  Google Scholar 

  2. Tarekegn, A.N., Ricceri, F., Costa, G., Ferracin, E., Giacobini, M.: Predictive modeling for frailty conditions in elderly people: machine learning approaches. JMIR Med. Informatics. (2020). https://doi.org/10.2196/16678

    Article  Google Scholar 

  3. Roca, L.G., Ríos, L.N., Sucarrats, G.M., Medina, H.C., García, D.S.: Parkinson’s disease, Kranion (2021). https://doi.org/10.24875/KRANION.M21000002

  4. Nutt, J.G., Bloem, B.R., Giladi, N., Hallett, M., Horak, F.B., Nieuwboer, A.: Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. (2011). https://doi.org/10.1016/S1474-4422(11)70143-0

    Article  Google Scholar 

  5. Tarekegn, A., Ricceri, F., Costa, G., Ferracin, E., Giacobini, M.: Detection of frailty using genetic programming. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds.) EuroGP 2020. LNCS, vol. 12101, pp. 228–243. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44094-7_15

    Chapter  Google Scholar 

  6. Tarekegn, A.N., Alemu, T.A., Tegegne, A.K.: A cluster-genetic programming approach for detecting pulmonary tuberculosis. Ethiop. J. Sci. Technol. (2021). https://doi.org/10.4314/ejst.v14i1.5

    Article  Google Scholar 

  7. Galar, M., et al.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev. 42, 463–484 (2012). https://doi.org/10.1109/TSMCC.2011.2161285

  8. Punin, C., et al.: A non-invasive medical device for Parkinson’s patients with episodes of freezing of gait. Sensors (Switzerland) (2019). https://doi.org/10.3390/s19030737

    Article  Google Scholar 

  9. Bächlin, M., et al.: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom. IEEE Trans. Inf Technol. Biomed. (2010). https://doi.org/10.1109/TITB.2009.2036165

    Article  Google Scholar 

  10. Mazilu, S., et al.: Online detection of freezing of gait with smartphones and machine learning techniques. In: 2012 6th International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth (2012). https://doi.org/10.4108/icst.pervasivehealth.2012.248680

  11. Martínez-Villaseñor, L., Ponce, H., Miralles-Pechuán, L.: A Survey on Freezing of Gait Detection and Prediction in Parkinson’s Disease. In: Martínez-Villaseñor, L., Herrera-Alcántara, O., Ponce, H., Castro-Espinoza, F.A. (eds.) MICAI 2020. LNCS (LNAI), vol. 12468, pp. 169–181. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60884-2_13

    Chapter  Google Scholar 

  12. Lissovoi, A., Oliveto, P.S.: On the time and space complexity of genetic programming for evolving Boolean conjunctions. J. Artif. Intell. Res. 66, 655–689 (2019). https://doi.org/10.1613/jair.1.11821

    Article  MathSciNet  MATH  Google Scholar 

  13. Darwin, C.: The origin of species, by means of natural selection, or the preservation of favored races in the struggle for life. Crayon 7, 149–150 (1860). https://doi.org/10.2307/25528056

    Article  Google Scholar 

  14. O’Reilly, U.-M.: Genetic programming. In: Proceedings of the Fourteenth International Conference Genetic and Evolutionary Computation Conference Companion - GECCO Companion ’12, ACM Press, New York, New York, USA, p. 693 (2012). https://doi.org/10.1145/2330784.2330912

  15. Mazilu, S., Calatroni, A., Gazit, E., Roggen, D., Hausdorff, J.M., Tröster, G.: Feature learning for detection and prediction of freezing of gait in Parkinson’s disease. In: Perner, P. (ed.) MLDM 2013. LNCS (LNAI), vol. 7988, pp. 144–158. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39712-7_11

    Chapter  Google Scholar 

  16. Thai-Nghe, N., Gantner, Z., Schmidt-Thieme, L.: Cost-sensitive learning methods for imbalanced data. In: Proceedings of the International Joint Conference Neural Networks (2010). https://doi.org/10.1109/IJCNN.2010.5596486

  17. Yildirim, P.: Chronic kidney disease prediction on imbalanced data by multilayer perceptron: chronic kidney disease prediction. In: Proceedings - International Computer Software Applications Conference (2017). https://doi.org/10.1109/COMPSAC.2017.84

  18. Wagner, S., et al.: Architecture and design of the HeuristicLab optimization environment (2014). https://doi.org/10.1007/978-3-319-01436-4_10

  19. Bhowan, U., Zhang, M., Johnston, M.: Genetic programming for classification with unbalanced data (2010). https://doi.org/10.1007/978-3-642-12148-7_1

  20. Witten, I.H., et al.: Data mining: practical machine learning tools and techniques. Elsevier (2011). https://doi.org/10.1016/C2009-0-19715-5

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by European Union through the Horizon 2020 Research and Innovation Programme in the context of the ALAMEDA project under grant agreement No GA 101017558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adane Nega Tarekegn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nega Tarekegn, A., Alaya Cheikh, F., Sajjad, M., Ullah, M. (2023). Towards Detecting Freezing of Gait Events Using Wearable Sensors and Genetic Programming. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2023. Lecture Notes in Computer Science(), vol 14125. Springer, Cham. https://doi.org/10.1007/978-3-031-42505-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42505-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42504-2

  • Online ISBN: 978-3-031-42505-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics