Nothing Special   »   [go: up one dir, main page]

Skip to main content

Effects of Prior Experience, Gender, and Age on Trust in a Banking Chatbot With(Out) Breakdown and Repair

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2023 (INTERACT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14143))

Included in the following conference series:

Abstract

Trust is an attitudinal construct that can be sensitive to prior experience, gender, and age. In our study, we explored how trust in a banking chatbot might be shaped by these user characteristics. Statistical analysis of 251 participants, who interacted with one of six chatbots defined by humanlikeness (high/low) and conversational performance (no breakdown, breakdown with repaired, breakdown without repair), showed that the user characteristics of gender and age did not significantly impact trust, but prior experience did. Trust resilience was found across the gender and age groups. The effect of users’ prior experience on their trust in a chatbot which they have never used holds implications for research and practice. Future studies on the effect of cultural context, longer interaction episodes, and more diverse application contexts on trust in chatbots are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adam, M., Wessel, M., Benlian, A.: AI-based chatbots in customer service and their effects on user compliance. Electron. Mark. 31(2), 427–445 (2021)

    Article  Google Scholar 

  2. Araujo, T.: Living up to the chatbot hype: the influence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions. Comput. Hum. Behav. 85, 183–189 (2018)

    Article  Google Scholar 

  3. Ashktorab, Z., Jain, M., Liao, Q.V., Weisz, J.D.: Resilient chat- bots: repair strategy preferences for conversational breakdowns. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2019)

    Google Scholar 

  4. Blut, M., Wang, C., Wünderlich, N.V., Brock, C.: Understanding anthropomorphism in service provision: a meta-analysis of physical robots, chatbots, and other AI. J. Acad. Mark. Sci. 49(4), 632–658 (2021)

    Article  Google Scholar 

  5. Brzowski, M., Nathan-Roberts, D.: Trust measurement in human– automation interaction: a systematic review. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 63, pp. 1595–1599. SAGE, Los Angeles (2019)

    Google Scholar 

  6. Buchan, N.R., Croson, R.T.A., Solnick, S.: Trust and gender: an examination of behavior and beliefs in the investment game. J. Econ. Behav. Organ. 68(3–4), 466–476 (2008)

    Article  Google Scholar 

  7. Ciechanowski, L., Przegalinska, A., Magnuski, M., Gloor, P.: In the shades of the uncanny valley: an experimental study of human–chatbot interaction. Future Gener. Comput. Syst. 92, 539–548 (2019)

    Article  Google Scholar 

  8. Corritore, C.L., Kracher, B., Wiedenbeck, S.: On-line trust: concepts, evolving themes, a model. Int. J. Hum. Comput. Stud. 58(6), 737–758 (2003)

    Article  Google Scholar 

  9. De Visser, E.J., et al.: Almost human: anthropomorphism increases trust resilience in cognitive agents. J. Exp. Psychol. Appl. 22(3), 331 (2016)

    Article  Google Scholar 

  10. Drift: The 2018 State of Chatbots Report. Technical report (2018). https://www.drift.com/blog/chatbots-report/

  11. Følstad, A., Taylor, C.: Conversational repair in chatbots for customer service: the effect of expressing uncertainty and suggesting alternatives. In: Følstad, A., et al. (eds.) CONVERSATIONS 2019. LNCS, vol. 11970, pp. 201–214. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39540-7_14

  12. Følstad, A., Taylor, C.: Investigating the user experience of customer service chatbot interaction: a framework for qualitative analysis of chatbot dialogues. Qual. User Exp. 6(1), 1–17 (2021). https://doi.org/10.1007/s41233-021-00046-5

    Article  Google Scholar 

  13. Forgas, J.P., Laham, S.M.: Halo effects. In: Pohl, R.F. (ed.) Cognitive Illusions: Intriguing Phenomena in Thinking, Judgment and Memory, pp. 276–290. Taylor & Francis Group, Routledge (2017)

    Google Scholar 

  14. Go, E., Shyam Sundar, S.: Humanizing chatbots: the effects of visual, identity and conversational cues on humanness perceptions. Comput. Hum. Behav. 97, 304–316 (2019)

    Google Scholar 

  15. van der Goot, M.J., Pilgrim, T.: Exploring age differences in motivations for and acceptance of chatbot communication in a customer service context. In: Følstad, A., et al. (eds.) CONVERSATIONS 2019. LNCS, vol. 11970, pp. 173–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39540-7_12

  16. Hall, E.: Conversational Design. A Book Apart New York (2018)

    Google Scholar 

  17. Hamacher, A., Bianchi-Berthouze, N., Pipe, A.G., Eder, K.: Believing in BERT: using expressive communication to enhance trust and counteract operational error in physical human-robot interaction. In: Proceedings of 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 493–500 (2016)

    Google Scholar 

  18. Hancock, P.A., Kessler, T.T., Kaplan, A.D., Brill, J.C., Szalma, J.L.: Evolving trust in robots: specification through sequential and comparative meta-analyses. Hum. Factors 63(7), 1196–1229 (2021)

    Article  Google Scholar 

  19. Haselhuhn, M.P., Kennedy, J.A., Kray, L.J., Van Zant, A.B., Schweitzer, M.E.: Gender differences in trust dynamics: women trust more than men following a trust violation. J. Exp. Soc. Psychol. 56, 104–109 (2015)

    Article  Google Scholar 

  20. Hassenzahl, M.: The interplay of beauty, goodness, and usability in interactive products. Hum. Comput. Interact. 19(4), 319–349 (2004)

    Article  Google Scholar 

  21. Haugeland, I.K.F., Følstad, A., Taylor, C., Bjørkli, C.A.: Understanding the user experience of customer service chatbots: an experimental study of chatbot interaction design. Int. J. Hum. Comput. Stud. 161, 102788 (2022)

    Article  Google Scholar 

  22. Jenneboer, L., Herrando, C., Constantinides, E.: The impact of chatbots on customer loyalty: a systematic literature review. J. Theor. Appl. Electron. Commer. Res. 17(1), 212–229 (2022)

    Article  Google Scholar 

  23. Kasilingam, D.L.: Understanding the attitude and intention to use smartphone chatbots for shopping. Technol. Soc. 62, 101280 (2020)

    Google Scholar 

  24. Laban, G., Araujo, T.: Working together with conversational agents: the relationship of perceived cooperation with service performance evaluations. In: Følstad, A., et al. (eds.) CONVERSATIONS 2019. LNCS, vol. 11970, pp. 215–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39540-7_15

  25. Lankton, N.K., Harrison McKnight, D., Tripp, J.: Technology, humanness, and trust: rethinking trust in technology. J. Assoc. Inf. Syst. 16(10), 1 (2015)

    Google Scholar 

  26. Law, E.L.-C., Følstad, A., van As, N.: Effects of humanlikeness and conversational breakdown on trust in chatbots for customer service. In: Proceedings of Nordic Human-Computer Interaction Conference (NordiCHI 2022), Aarhus, Denmark. ACM (2022)

    Google Scholar 

  27. Lortie, C.L., Guitton, M.J.: Judgment of the humanness of an interlocutor is in the eye of the beholder. PLoS ONE 6(9), e25085 (2011)

    Article  Google Scholar 

  28. Mayer, R.C., Davis, J.H., David Schoorman, F.: An integrative model of organizational trust. Acad. Manag. Rev. 20(3), 709–734 (1995)

    Google Scholar 

  29. Harrison Mcknight, D., Carter, M., Thatcher, J.B., Clay, P.F.: Trust in a specific technology: An investigation of its components and measures. ACM Trans. Manag. Inf. Syst. (TMIS) 2(2), 1–25 (2011)

    Article  Google Scholar 

  30. McTear, M.: Conversational AI: dialogue systems, conversational agents, and chatbots. Synth. Lect. Hum. Lang. Technol. 13(3), 1–251 (2020)

    Article  Google Scholar 

  31. Myers, C.M., Pardo, L.F.L., Acosta-Ruiz, A., Canossa, A., Zhu, J.: Try, try, try again:” sequence analysis of user interaction data with a voice user interface. In: Proceedings of the 3rd Conference on Conversational User Interfaces (CUI 2021), pp. 1–8, Article no. 18. ACM, New York (2021)

    Google Scholar 

  32. Nordheim, C.B., Følstad, A., Bjørkli, C.A.: An initial model of trust in chatbots for customer service—findings from a questionnaire study. Interact. Comput. 31(3), 317–335 (2019)

    Article  Google Scholar 

  33. Pesonen, J.A.: Are you ok?’ Students’ trust in a chatbot providing support opportunities. In: Zaphiris, P., Ioannou, A. (eds.) HCII 2021. LNCS, vol. 12785, pp. 199–215. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77943-6_13

  34. Radeke, M.K., Stahelski, A.J.: Altering age and gender stereotypes by creating the Halo and Horns effects with facial expressions. Humanit. Soc. Sci. Commun. 7(1), 1–11 (2020)

    Google Scholar 

  35. Rapp, A., Curti, L., Boldi, A.: The human side of human - chatbot interaction: a systematic literature review of ten years of research on text-based chatbots. Int. J. Hum. Comput. Stud. 151, 102630 (2021)

    Article  Google Scholar 

  36. Rheu, M., Shin, J.Y., Peng, W., Huh-Yoo, J.: Systematic re- view: trust-building factors and implications for conversational agent design. Int. J. Hum. Comput. Interact. 37(1), 81–96 (2021)

    Article  Google Scholar 

  37. Rousseau, D.M., Sitkin, S.B., Burt, R.S., Camerer, C.: Not so different after all: a cross-discipline view of trust. Acad. Manag. Rev. 23(3), 393–404 (1998)

    Article  Google Scholar 

  38. Schegloff, E.A.: Conversation analysis and socially shared cognition. In: Resnick, L.B., Levine, J.M., Teasley, S.D. (eds.) Socially Shared Cognition. American Psychological Association, Washington, DC, US, pp. 150–171 (1991)

    Google Scholar 

  39. Schönitz, M.-S.: The horn effect in relationship marketing: a systematic literature review. In: Proceedings of the 48th European Marketing Academy, pp. 8378 (2019)

    Google Scholar 

  40. Schuetzler, R.M., Giboney, J.S., Mark Grimes, G., Nunamaker Jr, J.F.: The influence of conversational agent embodiment and conversational relevance on socially desirable responding. Decis. Support Syst. 114, 94–102 (2018)

    Article  Google Scholar 

  41. Shevat, A.: Designing Bots: Creating Conversational Experiences. O’Reilly Media Inc., Boston (2017)

    Google Scholar 

  42. Taylor, M.P., Jacobs, K., Subrahmanyam, K.V.J., et al.: Smart talk: how organizations and consumers are embracing voice and chat assistants. Technical report. Capgemini SE (2019)

    Google Scholar 

  43. Terblanche, N., Kidd, M.: Adoption factors and moderating effects of age and gender that influence the intention to use a non-directive reflective coaching chatbot. SAGE Open 12(2), 21582440221096136 (2022)

    Google Scholar 

  44. Toader, D.-C., et al.: The effect of social presence and chatbot errors on trust. Sustainability 12(1), 256 (2019)

    Article  Google Scholar 

  45. Yan, W., Hall, A.S.M., Siehl, S., Grafman, J., Krueger, F.: Neural signatures of gender differences in interpersonal trust. Front. Hum. Neurosci. 14, 225 (2020)

    Article  Google Scholar 

  46. Yuksel, B.F., Collisson, P., Czerwinski, M.: Brains or beauty: how to engender trust in user-agent interactions. ACM Trans. Internet Technol. (TOIT) 17(1), 1–20 (2017)

    Article  Google Scholar 

  47. Zeffane, R.: Gender, individualism–collectivism and individuals’ propensity to trust: a comparative exploratory study. J. Manag. Organ. 26(4), 445–459 (2020)

    Google Scholar 

  48. Zhang, J.J.Y., Følstad, A., Bjørkli, C.A.: Organizational factors affecting successful implementation of chatbots for customer service. J. Internet Commer., 1–35 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Effie Lai-Chong Law .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Law, E.LC., van As, N., Følstad, A. (2023). Effects of Prior Experience, Gender, and Age on Trust in a Banking Chatbot With(Out) Breakdown and Repair. In: Abdelnour Nocera, J., Kristín Lárusdóttir, M., Petrie, H., Piccinno, A., Winckler, M. (eds) Human-Computer Interaction – INTERACT 2023. INTERACT 2023. Lecture Notes in Computer Science, vol 14143. Springer, Cham. https://doi.org/10.1007/978-3-031-42283-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42283-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42282-9

  • Online ISBN: 978-3-031-42283-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics