Nothing Special   »   [go: up one dir, main page]

Skip to main content

Two Variants of Bézout Subresultants for Several Univariate Polynomials

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14139))

Included in the following conference series:

  • 299 Accesses

Abstract

In this paper, we develop two variants of Bézout subresultant formulas for several polynomials, i.e., hybrid Bézout subresultant polynomial and non-homogeneous Bézout subresultant polynomial. Rather than simply extending the variants of Bézout subresultant formulas developed by Diaz–Toca and Gonzalez–Vega in 2004 for two polynomials to arbitrary number of polynomials, we propose a new approach to formulating two variants of the Bézout-type subresultant polynomials for a set of univariate polynomials. Experimental results show that the Bézout-type subresultant formulas behave better than other known formulas when used to compute multi-polynomial subresultants, among which the non-homogeneous Bézout-type formula shows the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The delimitation lines in matrices hereinafter do not have any particular mathematical meaning and they are only for the presentation purpose.

References

  1. Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I: the basic algorithm. SIAM J. Comput. 13(4), 865–877 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asadi, M., Brandt, A., Jeffrey, D.J., Maza, M.M.: Subresultant chains using Bézout matrices. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2022. LNCS, vol. 13366, pp. 29–50. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14788-3_3

    Chapter  Google Scholar 

  3. Barnett, S.: Greatest common divisor of several polynomials. In: Mathematical Proceedings of the Cambridge, vol. 70, pp. 263–268. Cambridge University Press (1971)

    Google Scholar 

  4. Barnett, S.: Polynomials and Linear Control Systems. Marcel Dekker, Inc. (1983)

    Google Scholar 

  5. Bostan, A., D’Andrea, C., Krick, T., Szanto, A., Valdettaro, M.: Subresultants in multiple roots: an extremal case. Linear Algebra Appl. 529, 185–198 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Collins, G.E.: Subresultants and reduced polynomial remainder sequences. J. ACM 14(1), 128–142 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cox, D.A., D’Andrea, C.: Subresultants and the Shape Lemma. Math. Comput. 92, 2355–2379 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diaz-Toca, G.M., Gonzalez-Vega, L.: Barnett’s theorems about the greatest common divisor of several univariate polynomials through Bezout-like matrices. J. Symb. Comput. 34(1), 59–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diaz-Toca, G.M., Gonzalez-Vega, L.: Various new expressions for subresultants and their applications. Appl. Algebr Eng. Comm. 15(3), 233–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hong, H., Yang, J.: A condition for multiplicity structure of univariate polynomials. J. Symb. Comput. 104, 523–538 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hong, H., Yang, J.: Subresultant of several univariate polynomials. arXiv preprint arXiv:2112.15370 (2021)

  13. Hou, X., Wang, D.: Subresultants with the Bézout matrix. In: Computer Mathematics, pp. 19–28. World Scientific (2000)

    Google Scholar 

  14. Kapur, D., Saxena, T., Yang, L.: Algebraic and geometric reasoning using Dixon resultants. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 99–107 (1994)

    Google Scholar 

  15. Lascoux, A., Pragacz, P.: Double Sylvester sums for subresultants and multi-Schur functions. J. Symb. Comput. 35(6), 689–710 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Y.B.: A new approach for constructing subresultants. Appl. Math. Comput. 183(1), 471–476 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Sylvester: On a theory of syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm’s functions, and that of the greatest algebraic common measure. Phil. Trans. R. Soc. Lond. 143, 407–548 (1853)

    Google Scholar 

  18. Terui, A.: Recursive polynomial remainder sequence and its subresultants. J. Algebra 320(2), 633–659 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, D.: Decomposing polynomial systems into simple systems. J. Symb. Comput. 25(3), 295–314 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, D.: Computing triangular systems and regular systems. J. Symb. Comput. 30(2), 221–236 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous reviewers for their helpful comments and insightful suggestions. The authors’ work was supported by National Natural Science Foundation of China (Grant No. 12261010), Natural Science Foundation of Guangxi (Grant No. 2023GXNSFBA026019) and the Natural Science Cultivation Project of GXMZU (Grant No. 2022MDKJ001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, W., Yang, J. (2023). Two Variants of Bézout Subresultants for Several Univariate Polynomials. In: Boulier, F., England, M., Kotsireas, I., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2023. Lecture Notes in Computer Science, vol 14139. Springer, Cham. https://doi.org/10.1007/978-3-031-41724-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41724-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41723-8

  • Online ISBN: 978-3-031-41724-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics