Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computing GCDs of Multivariate Polynomials over Algebraic Number Fields Presented with Multiple Extensions

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14139))

Included in the following conference series:

Abstract

Let \({\mathbb {Q}(\alpha _1,\cdots ,\alpha _n)}\) be an algebraic number field. In this paper, we present a modular gcd algorithm for computing the monic gcd, g, of two polynomials \(f_1,f_2\in \mathbb {Q}(\alpha _1,\ldots ,\alpha _n)[x_1,\ldots ,x_k]\). To improve the efficiency of our algorithm, we use linear algebra to find an isomorphism between \(\mathbb {Q}(\alpha _1,\ldots ,\alpha _n)\) and \(\mathbb {Q}(\gamma )\), where \(\gamma \) is a primitive element of \(\mathbb {Q}(\alpha _1,\ldots ,\alpha _n)\). This conversion is performed modulo a prime to prevent expression swell. Next, we use a sequence of evaluation points to convert the multivariate polynomials to univariate polynomials, enabling us to employ the monic Euclidean algorithm. We currently use dense interpolation to recover \(x_2,\dots ,x_k\) in the gcd. In order to reconstruct the rational coefficients in g, we apply the Chinese remaindering and the rational number reconstruction. We present an analysis of the expected time complexity of our algorithm. We have implemented our algorithm in Maple using a recursive dense representation for polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial interpolation. In: Proceedings of STOC 1988, pp. 301–309. ACM (1988)

    Google Scholar 

  2. Brown, W.S.: On Euclid’s algorithm and the computation of polynomial greatest common divisors. J. ACM 18, 478–504 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. Collins, G.E.: Subresultants and reduced polynomial remainder sequences. J. ACM 14, 128–142 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  4. Encarnación, M.J.: Computing GCDs of polynomials over algebraic number fields. J. Symb. Comput. 20, 299–313 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fateman, R.: Comparing the speed of programs for sparse polynomial multiplication. SIGSAM Bull. 37(1), 4–15 (2003)

    Article  MATH  Google Scholar 

  6. Jiaxiong, H., Monagan, M.: A fast parallel sparse polynomial GCD algorithm. Symb. Comput. 105(1), 28–63 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Langemyr, L., McCallum, S.: The computation of polynomial greatest common divisors over an algebraic number field. J. Symb. Comput. 8(5), 429–448 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lin, X., Maza, M.M., Schost, É.: Fast arithmetic for triangular sets: from theory to practice. J. Symb. Comput. 44(7), 891–907 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Monagan, M.: Maximal quotient rational reconstruction: an almost optimal algorithm for rational reconstruction. In: Proceedings of ISSAC 2004, pp. 243–249. ACM (2004)

    Google Scholar 

  10. Monagan, M., et al.: Maple 8 Introductory Programming Guide (2003)

    Google Scholar 

  11. Poteaux, A., Schost, É.: Modular composition modulo triangular sets and applications. Comput. Complex. 22, 463–516 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Poteaux, A., Schost, É.: On the complexity of computing with zero-dimensional triangular sets. J. Symb. Comput. 50, 110–138 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Smedley, T.: A new modular algorithm for computation of algebraic number polynomial GCDs. In: Proceedings of ISSAC 1989, pp. 91–94. ACM (1989)

    Google Scholar 

  14. Trager, B.M.: Algebraic factoring and rational function integration. In: Proceedings of the Third ACM Symposium on Symbolic and Algebraic Computation, SYMSAC 1976, pp. 219–226. ACM (1976)

    Google Scholar 

  15. van der Hoeven, J., Lecerf, G.: Accelerated tower arithmetic. J. Complex. 55, 101402 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. van der Hoeven, J., Lecerf, G.: Directed evaluation. J. Complex. 60, 101498 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. van Hoeij, M., Monagan, M.: A modular GCD algorithm over number fields presented with multiple extensions. In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC 2002, pp. 109–116. ACM (2002)

    Google Scholar 

  18. Wang, P., Guy, M.J.T., Davenport, J.H.: P-adic reconstruction of rational numbers. SIGSAM Bull. 16(2), 2–3 (1982)

    Article  MATH  Google Scholar 

  19. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09519-5_73

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported by Maplesoft and the National Science and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ansari, M., Monagan, M. (2023). Computing GCDs of Multivariate Polynomials over Algebraic Number Fields Presented with Multiple Extensions. In: Boulier, F., England, M., Kotsireas, I., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2023. Lecture Notes in Computer Science, vol 14139. Springer, Cham. https://doi.org/10.1007/978-3-031-41724-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41724-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41723-8

  • Online ISBN: 978-3-031-41724-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics