Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Character-Level Document Key Information Extraction Method with Contrastive Learning

  • Conference paper
  • First Online:
Document Analysis and Recognition - ICDAR 2023 (ICDAR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14189))

Included in the following conference series:

  • 946 Accesses

Abstract

Key information extraction (KIE) from documents has become a major area of focus in the field of natural language processing. However, practical applications often involve documents that contain visual elements, such as icons, tables, and images, which complicates the process of information extraction. Many of current methods require large pre-trained language models or multi-modal data inputs, leading to demanding requirements for the quality of the data-set and extensive training times. Furthermore, KIE datasets frequently suffer from out-of-vocabulary (OOV) issues. To address these challenges, this paper proposes a document KIE method based on the encoder-decoder model. To effectively handle the OOV problem, we use a character-level CNN to encode document information. We also introduce a label feedback mechanism in the decoder to provide the label embedding back to the encoder for predicting adjacent fields. Additionally, we propose a similarity module based on contrastive learning to address the problem of content diversity. Our method requires only text inputs, has fewer parameters, but still achieves comparable results with state-of-the-art methods on the document KIE task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Appalaraju, S., Jasani, B., Kota, B.U., Xie, Y., Manmatha, R.: DocFormer: end-to-end transformer for document understanding. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 973–983 (2021)

    Google Scholar 

  2. Denk, T.I., Reisswig, C.: BERTgrid: contextualized embedding for 2D document representation and understanding. In: Workshop on Document Intelligence at NeurIPS 2019 (2019)

    Google Scholar 

  3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019)

    Google Scholar 

  4. Garncarek, Ł, et al.: LAMBERT: layout-aware language modeling for information extraction. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12821, pp. 532–547. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86549-8_34

    Chapter  Google Scholar 

  5. Gu, J., et al.: Unidoc: unified pretraining framework for document understanding. Adv. Neural. Inf. Process. Syst. 34, 39–50 (2021)

    Google Scholar 

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  7. Hong, T., Kim, D., Ji, M., Hwang, W., Nam, D., Park, S.: BROS: a pre-trained language model focusing on text and layout for better key information extraction from documents. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 10767–10775 (2022)

    Google Scholar 

  8. Huang, Y., Lv, T., Cui, L., Lu, Y., Wei, F.: LayoutLMv3: pre-training for document ai with unified text and image masking. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 4083–4091 (2022)

    Google Scholar 

  9. Huang, Z., et al.: ICDAR 2019 competition on scanned receipt OCR and information extraction. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1516–1520 (2019)

    Google Scholar 

  10. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991 (2015)

  11. Hwang, W., Yim, J., Park, S., Yang, S., Seo, M.: Spatial dependency parsing for semi-structured document information extraction. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 330–343 (2021)

    Google Scholar 

  12. Jaume, G., Ekenel, H.K., Thiran, J.P.: FUNSD: a dataset for form understanding in noisy scanned documents. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 2, pp. 1–6. IEEE (2019)

    Google Scholar 

  13. Katti, A.R., Reisswig, C., Guder, C., Brarda, S., Bickel, S., Höhne, J., Faddoul, J.B.: Chargrid: towards understanding 2D documents. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4459–4469 (2018)

    Google Scholar 

  14. Kerroumi, M., Sayem, O., Shabou, A.: VisualWordGrid: information extraction from scanned documents using a multimodal approach. In: Barney Smith, E.H., Pal, U. (eds.) ICDAR 2021. LNCS, vol. 12917, pp. 389–402. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86159-9_28

    Chapter  Google Scholar 

  15. Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language models. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 2741–2749 (2016)

    Google Scholar 

  16. Lafferty, J., Mccallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001), pp. 282–289 (2002)

    Google Scholar 

  17. Li, Y., et al.: StrucTexT: structured text understanding with multi-modal transformers. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1912–1920 (2021)

    Google Scholar 

  18. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2017)

    Google Scholar 

  19. Lin, W., et al.: ViBERTgrid: a jointly trained multi-modal 2d document representation for key information extraction from documents. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12821, pp. 548–563. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86549-8_35

    Chapter  Google Scholar 

  20. Liu, X., Gao, F., Zhang, Q., Zhao, H.: Graph convolution for multimodal information extraction from visually rich documents. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers), pp. 32–39. Association for Computational Linguistics (2019)

    Google Scholar 

  21. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  22. Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., Khudanpur, S.: Recurrent neural network based language model. In: INTERSPEECH 2010, 11th Annual Conference of the International Speech Communication Association, pp. 1045–1048. ISCA (2010)

    Google Scholar 

  23. Park, S., et al.: CORD: a consolidated receipt dataset for post-OCR parsing. In: Workshop on Document Intelligence at NeurIPS 2019 (2019)

    Google Scholar 

  24. Powalski, R., Borchmann, Ł, Jurkiewicz, D., Dwojak, T., Pietruszka, M., Pałka, G.: Going Full-TILT Boogie on document understanding with text-image-layout transformer. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12822, pp. 732–747. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86331-9_47

    Chapter  Google Scholar 

  25. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training. https://ww.nasa.gov/nh/pluto-the-other-red-planet (2018)

  26. Stanisławek, T., et al.: Kleister: key information extraction datasets involving long documents with complex layouts. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12821, pp. 564–579. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86549-8_36

    Chapter  Google Scholar 

  27. Tang, G., et al.: MatchVIE: exploiting match relevancy between entities for visual information extraction. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 1039–1045. International Joint Conferences on Artificial Intelligence Organization (2021)

    Google Scholar 

  28. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30, pp. 5998–6008 (2017)

    Google Scholar 

  29. Wang, J., Jin, L., Ding, K.: LiLT: a simple yet effective language-independent layout transformer for structured document understanding. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7747–7757 (2022)

    Google Scholar 

  30. Wang, J., et al.: Towards robust visual information extraction in real world: new dataset and novel solution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2738–2745 (2021)

    Google Scholar 

  31. Xu, Y., et al.: LayoutLMv2: multi-modal pre-training for visually-rich document understanding. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 2579–2591 (2021)

    Google Scholar 

  32. Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., Zhou, M.: LayoutLM: pre-training of text and layout for document image understanding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1192–1200 (2020)

    Google Scholar 

  33. Yu, W., Lu, N., Qi, X., Gong, P., Xiao, R.: Pick: processing key information extraction from documents using improved graph learning-convolutional networks. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 4363–4370. IEEE (2021)

    Google Scholar 

  34. Zhang, P., et al.: TRIE: end-to-end text reading and information extraction for document understanding. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1413–1422 (2020)

    Google Scholar 

Download references

Acknowledgment

This work was supported by National Key R &D Program of China (No. 2021ZD0113301)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangcai Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Deng, J., Gao, L. (2023). A Character-Level Document Key Information Extraction Method with Contrastive Learning. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14189. Springer, Cham. https://doi.org/10.1007/978-3-031-41682-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41682-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41681-1

  • Online ISBN: 978-3-031-41682-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics