Nothing Special   »   [go: up one dir, main page]

Skip to main content

Inferring Missing Entity Identifiers from Context Using Event Knowledge Graphs

  • Conference paper
  • First Online:
Business Process Management (BPM 2023)

Abstract

Complete event data is essential to perform rich analysis. However, real-life systems might fail in recording the (correct) case identifiers the system has operated on, resulting in incomplete event data. We aim to infer missing case identifiers of events by considering the physical constraints of the process which previous work has failed to do. We extended Event Knowledge Graphs (EKGs) with concepts for context and rule-based inference. We use the extended EKGs to model event data in its physical context and define five inference rules to infer identifiers of physical objects in a process. We evaluate the effectiveness of the rules on data from the IC manufacturing industry using conformance checking. Initially, none of the traces were complete. Our method inferred a case identifier for 95% of the events resulting in 88% complete traces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Formally, let \(e, e' \in \textsf{Event}\) be correlated to the same entity \(n \in \textsf{Entity}, (e, n), (e',n) \in \textsf{corr}\): \(e \mathrel {\textsf{df}} e'\) holds iff \(\#_{time}(e) < \#_{time}(e')\) and there is no other event \(e'' \in \textsf{Event}, (e'', n) \in \textsf{corr}\) between e and \(e'\), i.e. \(\#_{time}(e)< \#_{time}(e'') <\#_{time}(e')\).

References

  1. Andrews, R., Emamjome, F., ter Hofstede, A.H.M., Reijers, H.A.: An expert lens on data quality in process mining. In: ICPM 2020, pp. 49–56 (2020)

    Google Scholar 

  2. Baier, T., Di Ciccio, C., Mendling, J., Weske, M.: Matching events and activities by integrating behavioral aspects and label analysis. Softw. Syst. Model. 17(2), 573–598 (2018)

    Article  Google Scholar 

  3. Bala, S., Mendling, J., Schimak, M., Queteschiner, P.: Case and activity identification for mining process models from middleware. In: Buchmann, R.A., Karagiannis, D., Kirikova, M. (eds.) PoEM 2018. LNBIP, vol. 335, pp. 86–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02302-7_6

    Chapter  Google Scholar 

  4. Bayomie, D., Awad, A., Ezat, E.: Correlating unlabeled events from cyclic business processes execution. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 274–289. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_17

    Chapter  Google Scholar 

  5. Bayomie, D., Di Ciccio, C., Mendling, J.: Event-case correlation for process mining using probabilistic optimization. Inf. Syst. 114, 102167 (2023)

    Article  Google Scholar 

  6. Bayomie, D., Revoredo, K., Di Ciccio, C., Mendling, J.: Improving accuracy and explainability in event-case correlation via rule mining. In: ICPM 2022, pp. 24–31. IEEE (2022)

    Google Scholar 

  7. Bellomarini, L., Fakhoury, D., Gottlob, G., Sallinger, E.: Knowledge graphs and enterprise AI: The promise of an enabling technology. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 26–37 (2019)

    Google Scholar 

  8. Blank, P., Maurer, M., Siebenhofer, M., Rogge-Solti, A., Schönig, S.: Location-aware path alignment in process mining. In: EDOC Workshops 2016, pp. 1–8. IEEE (2016)

    Google Scholar 

  9. Denisov, V., Fahland, D., van der Aalst, W.M.P.: Unbiased, fine-grained description of processes performance from event data. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 139–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_9

    Chapter  Google Scholar 

  10. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data Semant. 10, 109–141 (2021)

    Article  Google Scholar 

  11. Fahland, D.: Process mining over multiple behavioral dimensions with event knowledge graphs. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 274–319. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_9

  12. Fahland, D., Denisov, V., van der Aalst, W.M.P.: Inferring unobserved events in systems with shared resources and queues. Fundam. Inform. 183(3–4), 203–242 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Ferreira, D.R., Gillblad, D.: Discovering process models from unlabelled event logs. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 143–158. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03848-8_11

    Chapter  Google Scholar 

  14. Jagadeesh Chandra Bose, R.P., Mans, R.S., van der Aalst, W.M.P.: Wanna improve process mining results?: It’s high time we consider data quality issues seriously. In: Proceedings of the IEEE CIDM, pp. 127–134. IEEE (2013)

    Google Scholar 

  15. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.: From low-level events to activities - a pattern-based approach. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 125–141. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_8

    Chapter  Google Scholar 

  16. de Murillas, E.G.L., Reijers, H.A., van der Aalst, W.M.P.: Case notion discovery and recommendation: automated event log building on databases. Knowl. Inf. Syst. 62(7), 2539–2575 (2020)

    Article  Google Scholar 

  17. Pegoraro, M., Uysal, M.S., Hülsmann, T., van der Aalst, W.M.P.: Uncertain case identifiers in process mining: a user study of the event-case correlation problem on click data. In: Augusto, A., Gill, A., Bork, D., Nurcan, S., Reinhartz-Berger, I., Schmidt, R. (eds.) Enterprise, Business-Process and Information Systems Modeling. BPMDS and EMMSAD 2022. LNBIP, vol. 450, pp. 173–187. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07475-2_12

  18. Pourmirza, S., Dijkman, R.M., Grefen, P.W.: Correlation miner: mining business process models and event correlations without case identifiers. Int. J. Cooper. Inf. Syst. 26(2), 1742002:1-1742002:32 (2017)

    Article  Google Scholar 

  19. Rogge-Solti, A., Mans, R.S., van der Aalst, W.M.P., Weske, M.: Repairing event logs using timed process models. In: Demey, Y.T., Panetto, H. (eds.) OTM 2013. LNCS, vol. 8186, pp. 705–708. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41033-8_89

    Chapter  Google Scholar 

  20. Suriadi, S., Andrews, R., ter Hofstede, A.H.M., Wynn, M.T.: Event log imperfection patterns for process mining: towards a systematic approach to cleaning event logs. Inf. Syst. 64, 132–150 (2017)

    Article  Google Scholar 

  21. Swevels, A., Dijkman, R.M., Fahland, D.: Inferring missing entity identifiers from context using event knowledge graphs. Technical report, Eindhoven University of Technology (2023). https://doi.org/10.5281/zenodo.7802241

  22. Swevels, A.: Creating a digital shadow of a manufacturing process with inferred missing information using an event knowledge graph. Master’s thesis, Eindhoven University of Technology (2022)

    Google Scholar 

  23. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.: Mining process model descriptions of daily life through event abstraction. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2016. SCI, vol. 751, pp. 83–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-69266-1_5

    Chapter  Google Scholar 

Download references

Acknowledgement

The research underlying this paper was partially supported by NXP Semiconductors and by AutoTwin EU GA n. 101092021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ava Swevels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Swevels, A., Dijkman, R., Fahland, D. (2023). Inferring Missing Entity Identifiers from Context Using Event Knowledge Graphs. In: Di Francescomarino, C., Burattin, A., Janiesch, C., Sadiq, S. (eds) Business Process Management. BPM 2023. Lecture Notes in Computer Science, vol 14159. Springer, Cham. https://doi.org/10.1007/978-3-031-41620-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41620-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41619-4

  • Online ISBN: 978-3-031-41620-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics