Abstract
Complete event data is essential to perform rich analysis. However, real-life systems might fail in recording the (correct) case identifiers the system has operated on, resulting in incomplete event data. We aim to infer missing case identifiers of events by considering the physical constraints of the process which previous work has failed to do. We extended Event Knowledge Graphs (EKGs) with concepts for context and rule-based inference. We use the extended EKGs to model event data in its physical context and define five inference rules to infer identifiers of physical objects in a process. We evaluate the effectiveness of the rules on data from the IC manufacturing industry using conformance checking. Initially, none of the traces were complete. Our method inferred a case identifier for 95% of the events resulting in 88% complete traces.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Formally, let \(e, e' \in \textsf{Event}\) be correlated to the same entity \(n \in \textsf{Entity}, (e, n), (e',n) \in \textsf{corr}\): \(e \mathrel {\textsf{df}} e'\) holds iff \(\#_{time}(e) < \#_{time}(e')\) and there is no other event \(e'' \in \textsf{Event}, (e'', n) \in \textsf{corr}\) between e and \(e'\), i.e. \(\#_{time}(e)< \#_{time}(e'') <\#_{time}(e')\).
References
Andrews, R., Emamjome, F., ter Hofstede, A.H.M., Reijers, H.A.: An expert lens on data quality in process mining. In: ICPM 2020, pp. 49–56 (2020)
Baier, T., Di Ciccio, C., Mendling, J., Weske, M.: Matching events and activities by integrating behavioral aspects and label analysis. Softw. Syst. Model. 17(2), 573–598 (2018)
Bala, S., Mendling, J., Schimak, M., Queteschiner, P.: Case and activity identification for mining process models from middleware. In: Buchmann, R.A., Karagiannis, D., Kirikova, M. (eds.) PoEM 2018. LNBIP, vol. 335, pp. 86–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02302-7_6
Bayomie, D., Awad, A., Ezat, E.: Correlating unlabeled events from cyclic business processes execution. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 274–289. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_17
Bayomie, D., Di Ciccio, C., Mendling, J.: Event-case correlation for process mining using probabilistic optimization. Inf. Syst. 114, 102167 (2023)
Bayomie, D., Revoredo, K., Di Ciccio, C., Mendling, J.: Improving accuracy and explainability in event-case correlation via rule mining. In: ICPM 2022, pp. 24–31. IEEE (2022)
Bellomarini, L., Fakhoury, D., Gottlob, G., Sallinger, E.: Knowledge graphs and enterprise AI: The promise of an enabling technology. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 26–37 (2019)
Blank, P., Maurer, M., Siebenhofer, M., Rogge-Solti, A., Schönig, S.: Location-aware path alignment in process mining. In: EDOC Workshops 2016, pp. 1–8. IEEE (2016)
Denisov, V., Fahland, D., van der Aalst, W.M.P.: Unbiased, fine-grained description of processes performance from event data. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 139–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_9
Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data Semant. 10, 109–141 (2021)
Fahland, D.: Process mining over multiple behavioral dimensions with event knowledge graphs. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 274–319. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_9
Fahland, D., Denisov, V., van der Aalst, W.M.P.: Inferring unobserved events in systems with shared resources and queues. Fundam. Inform. 183(3–4), 203–242 (2021)
Ferreira, D.R., Gillblad, D.: Discovering process models from unlabelled event logs. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 143–158. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03848-8_11
Jagadeesh Chandra Bose, R.P., Mans, R.S., van der Aalst, W.M.P.: Wanna improve process mining results?: It’s high time we consider data quality issues seriously. In: Proceedings of the IEEE CIDM, pp. 127–134. IEEE (2013)
Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.: From low-level events to activities - a pattern-based approach. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 125–141. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_8
de Murillas, E.G.L., Reijers, H.A., van der Aalst, W.M.P.: Case notion discovery and recommendation: automated event log building on databases. Knowl. Inf. Syst. 62(7), 2539–2575 (2020)
Pegoraro, M., Uysal, M.S., Hülsmann, T., van der Aalst, W.M.P.: Uncertain case identifiers in process mining: a user study of the event-case correlation problem on click data. In: Augusto, A., Gill, A., Bork, D., Nurcan, S., Reinhartz-Berger, I., Schmidt, R. (eds.) Enterprise, Business-Process and Information Systems Modeling. BPMDS and EMMSAD 2022. LNBIP, vol. 450, pp. 173–187. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07475-2_12
Pourmirza, S., Dijkman, R.M., Grefen, P.W.: Correlation miner: mining business process models and event correlations without case identifiers. Int. J. Cooper. Inf. Syst. 26(2), 1742002:1-1742002:32 (2017)
Rogge-Solti, A., Mans, R.S., van der Aalst, W.M.P., Weske, M.: Repairing event logs using timed process models. In: Demey, Y.T., Panetto, H. (eds.) OTM 2013. LNCS, vol. 8186, pp. 705–708. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41033-8_89
Suriadi, S., Andrews, R., ter Hofstede, A.H.M., Wynn, M.T.: Event log imperfection patterns for process mining: towards a systematic approach to cleaning event logs. Inf. Syst. 64, 132–150 (2017)
Swevels, A., Dijkman, R.M., Fahland, D.: Inferring missing entity identifiers from context using event knowledge graphs. Technical report, Eindhoven University of Technology (2023). https://doi.org/10.5281/zenodo.7802241
Swevels, A.: Creating a digital shadow of a manufacturing process with inferred missing information using an event knowledge graph. Master’s thesis, Eindhoven University of Technology (2022)
Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.: Mining process model descriptions of daily life through event abstraction. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2016. SCI, vol. 751, pp. 83–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-69266-1_5
Acknowledgement
The research underlying this paper was partially supported by NXP Semiconductors and by AutoTwin EU GA n. 101092021.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Swevels, A., Dijkman, R., Fahland, D. (2023). Inferring Missing Entity Identifiers from Context Using Event Knowledge Graphs. In: Di Francescomarino, C., Burattin, A., Janiesch, C., Sadiq, S. (eds) Business Process Management. BPM 2023. Lecture Notes in Computer Science, vol 14159. Springer, Cham. https://doi.org/10.1007/978-3-031-41620-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-41620-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41619-4
Online ISBN: 978-3-031-41620-0
eBook Packages: Computer ScienceComputer Science (R0)