Nothing Special   »   [go: up one dir, main page]

Skip to main content

Postmodern Human-Machine Dialogues: Pedagogical Inquiry Experiments

  • Conference paper
  • First Online:
Graph-Based Representation and Reasoning (ICCS 2023)

Abstract

In the classical Human-Machine Dialogue (HMD) setting, existing research has mainly focused on the objective quality of the machine answer. However, it has been recently shown that humans do not perceive in the same manner a human made answer and respectively a machine made answer. In this paper, we put ourselves in the context of conversational Artificial Intelligence software and introduce the setting of postmodern human machine dialogues by focusing on the factual relativism of the human perception of the interaction. We demonstrate the above-mentioned setting in a practical setting via a pedagogical experiment using ChatGPT3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jung, C.G., Hinkle, B.M.: Symbolism of the mother and of rebirth (1925)

    Google Scholar 

  2. Brian, C.R., Goodenough, F.L.: The relative potency of color and form perception at various ages. J. Exp. Psychol. 12(3), 197 (1929)

    Article  Google Scholar 

  3. Hugh Everett, I.I.I.: “Relative state” formulation of quantum mechanics. Rev. Modern Phys. 29(3), 454 (1957)

    Google Scholar 

  4. Drucker, P.: “Landmarks of tomorrow: a report on the new” post-modern. World (1959)

    Google Scholar 

  5. Walton, D.N.: Dialogue theory for critical thinking. Argumentation 3, 169–184 (1989)

    Article  Google Scholar 

  6. Pfeiffer, H.D., Nagle, T.E. (eds.): Conceptual Structures: Theory and Implementation. LNCS, vol. 754. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57454-9

    Book  Google Scholar 

  7. Walter Truett Anderson: The moving boundary: art, science, and the construction of reality. World Futures: J. General Evol. 40(1–3), 27–34 (1994)

    Article  Google Scholar 

  8. Grenz, S.J.: A Primer on Postmodernism. Wm. B. Eerdmans Publishing (1996)

    Google Scholar 

  9. Anderson, A.H., et al.: Multi-mediating Multi-party Interactions. In: Interact, pp. 313–320 (1999)

    Google Scholar 

  10. Hu, Y., Goodale, M.A.: Grasping after a delay shifts size-scaling from absolute to relative metrics. J. Cogn. Neurosci. 12(5), 856–868 (2000)

    Article  Google Scholar 

  11. Kahneman, D.: A perspective on judgment and choice: mapping bounded rationality. Am. Psychol. 58(9), 697 (2003)

    Article  Google Scholar 

  12. Turing, A.: Intelligent Machinery (1948), p. 395. B. Jack Copeland (2004)

    Google Scholar 

  13. Prakken, H.: Formal systems for persuasion dialogue. The Knowl. Eng. Rev. 21(2), 163–188 (2006)

    Article  Google Scholar 

  14. Stapp, H.P.: Mindful Universe: Quantum Mechanics and the Participating Observer, vol. 238. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72414-8

    Book  MATH  Google Scholar 

  15. Van Ditmarsch, H., van Der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, vol. 337. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5839-4

  16. Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Simari, G., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 85–104. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-98197-0_5

    Chapter  Google Scholar 

  17. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 1–17. Springer, Heidelber (2009). https://doi.org/10.1007/978-3-540-92673-3_0

    Chapter  Google Scholar 

  18. Hoffman, G.: Embodied cognition for autonomous interactive robots. Top. Cogn. Sci. 4(4), 759–772 (2012)

    Article  Google Scholar 

  19. Croitoru, M., Vesic, S.: What can argumentation do for inconsistent ontology query answering? In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS (LNAI), vol. 8078, pp. 15–29. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40381-1_2

    Chapter  Google Scholar 

  20. Russel, S., Norvig, P., et al.: Artificial Intelligence: A Modern Approach, vol. 256. Pearson Education Limited, London (2013)

    Google Scholar 

  21. Germano, S., Pham, T.-L., Mileo, A.: Web stream reasoning in practice: on the expressivity vs. scalability tradeoff. In: ten Cate, B., Mileo, A. (eds.) RR 2015. LNCS, vol. 9209, pp. 105–112. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22002-4_9

    Chapter  Google Scholar 

  22. Bonzon, E., Delobelle, J., Konieczny, S., Maudet, N.: A comparative study of ranking-based semantics for abstract argumentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  23. Mallios S., Bourbakis, N.: A survey on human machine dialogue systems. In: 2016 7th international conference on information, intelligence, systems & applications (IISA), pp. 1–7. IEEE (2016)

    Google Scholar 

  24. Arioua, A., Croitoru, M., Vesic, S.: Logic-based argumentation with existential rules. Int. J. Approximate Reasoning 90, 76–106 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Baroni, P.,Gabbay, D., Giacomin, M., Van der Torre, L.: Handbook of Formal Argumentation (2018)

    Google Scholar 

  26. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gonçalves, B.: Machines will think: structure and interpretation of Alan turing’s imitation game (2020)

    Google Scholar 

  28. La Torre, D., Colapinto, C., Durosini, I.,Triberti, S. : Team formation for human-artificial intelligence collaboration in the workplace: a goal programming model to foster organizational change. IEEE Trans. Eng. Manag. (2021)

    Google Scholar 

  29. Shneiderman, B.: Human-Centered AI. Oxford University Press, Oxford (2022)

    Book  Google Scholar 

  30. Yalcin, G., Lim, S., Puntoni, S., van Osselaer, S.M.J.: How do customers react when their requests are evaluated by algorithms? MIT Sloan Manage. Rev. 63(3), 1–3 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Bocquelet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bocquelet, M. et al. (2023). Postmodern Human-Machine Dialogues: Pedagogical Inquiry Experiments. In: Ojeda-Aciego, M., Sauerwald, K., Jäschke, R. (eds) Graph-Based Representation and Reasoning. ICCS 2023. Lecture Notes in Computer Science(). Springer, Cham. https://doi.org/10.1007/978-3-031-40960-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40960-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40959-2

  • Online ISBN: 978-3-031-40960-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics