Nothing Special   »   [go: up one dir, main page]

Skip to main content

Structuring Research Related to Dynamic Risk Management for Autonomous Systems

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security. SAFECOMP 2023 Workshops (SAFECOMP 2023)

Abstract

Conventional safety engineering is not sufficient to deal with Artificial Intelligence (AI) and Autonomous Systems (AS). Some authors propose dynamic safety approaches to deal with the challenges related to AI and AS. These approaches are referred to as dynamic risk management, dynamic safety management, dynamic assurance, or runtime certification [4]. These dynamic safety approaches are related to each other and the research in this field is increasing. In this paper, we structure the research challenges and solution approaches in order to explain why dynamic risk management is needed for dependability of autonomous systems. We will present 5 research areas in this large research field and name for each research area some concrete approaches or standardization activities. We hope the problem decomposition helps to foster effective research collaboration and enables researchers to better navigate the challenges surrounding dynamic risk management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurd, Z., Kelly, T., McDermid, J., Calinescu, R., Kwiatkowska, M.: Establishing a framework for dynamic risk management in ‘intelligent’ aero-engine control. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol. 5775, pp. 326–341. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04468-7_26

    Chapter  Google Scholar 

  2. Trapp, M., et al.: Towards safety-awareness and dynamic safety management. In: 2018 14th European Dependable Computing Conference (EDCC), Iasi, Romania (2018)

    Google Scholar 

  3. Asaadi, E., Denney, E., Menzies, J., Pai, G.J., Petroff, D.: Dynamic assurance cases: a pathway to trusted autonomy. Computer 53(12), 35–46 (2020)

    Article  Google Scholar 

  4. Rushby, J.: Runtime certification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 21–35. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89247-2_2

    Chapter  Google Scholar 

  5. Kagermann, H., et al.: Das fachforum autonome systeme im hightech-forum der bundesregierung –chancen und risiken für wirtschaft, wissenschaft und gesellschaft. Final report, Berlin (2017)

    Google Scholar 

  6. Saidi, S., Ziegenbein, D., Deshmukh, J.V., Ernst, R.: Autonomous systems design: charting a new discipline. IEEE Design Test. 39(1), 8–23 (2022)

    Article  Google Scholar 

  7. Feth, P., Schneider, D., Adler, R.: A conceptual safety supervisor definition and evaluation framework for autonomous systems. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 135–148. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66266-4_9

    Chapter  Google Scholar 

  8. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and scalable self-driving cars. ArXiv abs/1708.06374 (2017)

    Google Scholar 

  9. Reich, J., Wellstein, M., Sorokos, I., Oboril, F., Scholl, K.U.: Towards a software component to perform situation-aware dynamic risk assessment for autonomous vehicles. In: European Dependable Computing Conference - EDCC 2021 Workshops (2021)

    Google Scholar 

  10. Huang, H.-M., et al.: Autonomy levels for unmanned systems (ALFUS) framework: an update. In: Proceedings of the 2005 SPIE Defense and Security Symposium, Orlando, Florida (2005)

    Google Scholar 

  11. Adler, R.: A Model-based approach for exploring the space of adaptation behaviors of safety-related embedded systems. Dissertation. Fraunhofer Verlag (2013)

    Google Scholar 

  12. Trapp, M., Adler, R., Forster, M., Junger, J.: Runtime adaptation in safety-critical automotive systems (2007)

    Google Scholar 

  13. Henne, M., et al.: Benchmarking uncertainty estimation methods for deep learning with safety-related metrics. In: SafeAI Workshop@AAAI Conference (2020)

    Google Scholar 

  14. Kläs, M., et al.: Handling uncertainties of data-driven models in compliance with safety constraints for autonomous behavior. In: 2021 17th European Dependable Computing Conference (EDCC), Munich, Germany, pp. 95–102 (2021)

    Google Scholar 

  15. Groß, J., et al.: Architectural patterns for handling runtime uncertainty of data-driven models in safety-critical perception. In: Trapp, Saglietti, Spisländer, Bitsch (eds.) SAFECOMP 2022. LNCS, vol. 13414, pp. 284–297. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14835-4_19

    Chapter  Google Scholar 

  16. Schneider, D., Trapp, M.:. Conditional safety certification of open adaptive systems. ACM Trans. Auton. Adapt. Syst. 8(2), 1–20 (2013). Article 8

    Google Scholar 

  17. Zeller, M., et al.: Open dependability exchange metamodel: a format to exchange safety information. In: Annual Reliability and Maintainability Symposium (RAMS), USA (2023)

    Google Scholar 

  18. Rushby, J.: The interpretation and evaluation of assurance cases (2015). http://www.csl.sri.com/users/rushby/papers/sri-csl-15-1-assurance-cases.pdf30T

  19. Bishop, P., Povyakalo, A., Strigini, L.: Bootstrapping confidence in future safety from past safe operation. In: 2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE), Charlotte, NC, USA, pp. 97–108 (2022)

    Google Scholar 

  20. Hawkins, R., Conmy, P.: Identifying runtime monitoring requirements for autonomous systems through the analysis of safety arguments. In: Proceedings of 42nd International Conference on Computer Safety, Reliability and Security (Safecomp 2023) (2023, to appear)

    Google Scholar 

  21. Denney, E., Pai, G., Habli, I.: Dynamic safety cases for through-life safety assurance. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Florence, Italy, pp. 587–590 (2015). https://doi.org/10.1109/ICSE.2015.199

  22. Schneider, D., Trapp, M.: B-space: dynamic management and assurance of open systems of systems. J. Internet Serv. Appl. 9, 15 (2018). https://doi.org/10.1186/s13174-018-0084-5

    Article  Google Scholar 

  23. Schleiss, P., Carella, F., Kurzidem, I.: Towards continuous safety assurance for autonomous systems. In: 2022 6th International Conference on System Reliability and Safety (ICSRS), Venice, Italy, pp. 457–462 (2022). https://doi.org/10.1109/ICSRS56243.2022.10067323

  24. DIN Spec homepage, DIN SPEC 92005 Artificial Intelligence - Uncertainty quantification in machine learning. https://www.din.de/de/forschung-und-innovation/din-spec/alle-geschaeftsplaene/wdc-beuth:din21:360097552. Accessed June 2023

  25. Press Release “LOPAAS project”. https://www.iese.fraunhofer.de/en/media/press/pm-2021-10-18-paradigmenwechsel-se.html. Accessed June 2023

  26. DREAMS workshop homepage. https://www.iese.fraunhofer.de/en/seminare_training/edcc-workshop.html, visited 06.2023

  27. ISO/IEC FDIS 23894: Information technology—Artificial intelligence—Guidance on risk management (2022)

    Google Scholar 

Download references

Acknowledgments

This work has been funded by the project “LOPAAS” (Layers of Protection Architecture for Autonomous Systems) as part of the internal funding program “ICON” of the Fraunhofer-Gesellschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Adler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adler, R., Reich, J., Hawkins, R. (2023). Structuring Research Related to Dynamic Risk Management for Autonomous Systems. In: Guiochet, J., Tonetta, S., Schoitsch, E., Roy, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2023 Workshops. SAFECOMP 2023. Lecture Notes in Computer Science, vol 14182. Springer, Cham. https://doi.org/10.1007/978-3-031-40953-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40953-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40952-3

  • Online ISBN: 978-3-031-40953-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics