Nothing Special   »   [go: up one dir, main page]

Skip to main content

Promoting Reproducibility of Research Results in International Events (Report from the \(4^{th}\) RRPR)

  • Conference paper
  • First Online:
Reproducible Research in Pattern Recognition (RRPR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14068))

Included in the following conference series:

  • 100 Accesses

Abstract

Following the fourth edition of the workshop on Reproducible Research in Pattern Recognition (RRPR) at the International Conference on Pattern Recognition (ICPR), this paper reports the main discussions that were held during and after the workshop. In particular, the integration of reproducible research inside an international conference was the first main axis of reflection. Further discussions addressed the ways of initiating or imposing reproducible research, as well as the problem of performance comparisons of published research papers that emerges due to the fact that the reported results are often based on different implementations and datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://hub.docker.com/.

  2. 2.

    Source: https://github.com/lixin4ever/Conference-Acceptance-Rate (accessed on 2 April 2023).

  3. 3.

    However, for GPT-4 [19], OpenAI published the evaluation code, which makes comparison with their claimed results easy.

References

  1. Colom, M., Kerautret, B., Krähenbühl, A.: An Overview of Platforms for Reproducible Research and Augmented Publications. In: Kerautret, B., Colom, M., Lopresti, D., Monasse, P., Talbot, H. (eds.) RRPR 2018. LNCS, vol. 11455, pp. 25–39. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23987-9_2

    Chapter  Google Scholar 

  2. Artifact review and badging, 2020. Revised August 24. https://www.acm.org/publications/policies/artifact-review-and-badging-current. Accessed October 14

  3. Raff, E.: A step toward quantifying independently reproducible machine learning research. In: Advances in Neural Information Processing Systems. Curran Associates Inc, (2019)

    Google Scholar 

  4. NeurIPS 2022 Paper Checklist Guidelines. https://neurips.cc/Conferences/2022/PaperInformation/PaperChecklist (accessed in 26 February 2023)

  5. Pineau, J.: Improving Reproducibility in Machine Learning Research (a Report from the NeurIPS 2019 Reproducibility Program). J. Mach. Learn. Res., 22(1) (2022). Publisher: JMLR.org

    Google Scholar 

  6. The Machine Learning Reproducibility Checklist. https://www.cs.mcgill.ca/ jpineau/ReproducibilityChecklist.pdf. Accessed 13 Mar 2023

  7. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in NLP. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3645–3650 (2019)

    Google Scholar 

  8. ML Reproducibility Challenge 2022, 2022. https://paperswithcode.com/rc2022,. Accessed 4 Mar 2023

  9. ICMR reproducibility, 2023. https://icmr-reproducibility.github.io/website/cfp2023/, Accessed 4 Mar 2023

  10. Arévalo, M., Escobar, C., Monasse, P., Monzón, N., Colom, M.: The IPOL Demo System: A Scalable Architecture of Microservices for Reproducible Research. In: Kerautret, B., Colom, M., Monasse, P. (eds.) RRPR 2016. LNCS, vol. 10214, pp. 3–16. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56414-2_1

    Chapter  Google Scholar 

  11. IPOL demo system development. https://github.com/ipol-journal/ipolDevel. Accessed 26 Feb 2023

  12. Call for demonstrations of the IJCAI international conference. https://github.com/ipol-journal/ipolDevelhttps://ijcai-23.org/call-for-demos. Accessed 1 Apr 2023

  13. Rougier, N.P., Hinsen, K.: ReScience C: A Journal for Reproducible Replications in Computational Science. In: Kerautret, B., Colom, M., Lopresti, D., Monasse, P., Talbot, H. (eds.) RRPR 2018. LNCS, vol. 11455, pp. 150–156. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23987-9_14

    Chapter  Google Scholar 

  14. Colom, M., Kerautret, B., Limare, N., Monasse, P., and Jean-Michel Morel. IPOL: a new journal for fully reproducible research; analysis of four years development. In: Badra, M., Boukerche, A.,mUrien, P., eds 7th International Conference on New Technologies, Mobility and Security, NTMS 2015, Paris, France, July 27–29, 2015, pp. 1–5. IEEE (2015)

    Google Scholar 

  15. Johnson, A., Bulgarelli, L.: Tom Pollard. Leo Anthony Celi, and Roger Mark. MIMIC-IV, Steven Horng (2021)

    Google Scholar 

  16. Bommasani, R., et al.: On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258 (2021)

  17. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, pp. 1322–1333, New York, NY, USA (2015). Association for Computing Machinery

    Google Scholar 

  18. Brown, T., et al.: Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  19. OpenAI. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774 (2023)

  20. van Dis, E.A.M., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: ChatGPT: five priorities for research. Nature 614(7947), 224–226 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kerautret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kerautret, B., Kirchheim, K., Lopresti, D., Ngo, P., Tomaszewska, P. (2023). Promoting Reproducibility of Research Results in International Events (Report from the \(4^{th}\) RRPR). In: Kerautret, B., Colom, M., Krähenbühl, A., Lopresti, D., Monasse, P., Perret, B. (eds) Reproducible Research in Pattern Recognition. RRPR 2022. Lecture Notes in Computer Science, vol 14068. Springer, Cham. https://doi.org/10.1007/978-3-031-40773-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40773-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40772-7

  • Online ISBN: 978-3-031-40773-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics