Abstract
Smart eHealth applications deliver personalized and preventive digital healthcare services to clients through remote sensing, continuous monitoring, and data analytics. Smart eHealth applications sense input data from multiple modalities, transmit the data to edge and/or cloud nodes, and process the data with compute-intensive machine learning (ML) algorithms. Run-time variations with continuous stream of noisy input data, unreliable network connection, computational requirements of ML algorithms, and choice of compute placement among sensor–edge–cloud layers affect the efficiency of ML-driven eHealth applications. In this chapter, we present edge-centric techniques for optimized compute placement, exploration of accuracy–performance trade-offs, and cross-layered sense–compute co-optimization for ML-driven eHealth applications. We demonstrate the practical use cases of smart eHealth applications in everyday settings, through a sensor–edge–cloud framework for an objective pain assessment case study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adibuzzaman, M., Ostberg, C., Ahamed, S., Povinelli, R., Sindhu, B., Love, R., Kawsar, F., Ahsan, G.M.T.: Assessment of pain using facial pictures taken with a smartphone. In: 2015 IEEE 39th Annual Computer Software and Applications Conference, vol. 2, pp. 726–731. IEEE, Piscataway (2015)
Aqajari, S.A.H., Cao, R., Kasaeyan Naeini, E., Calderon, M.D., Zheng, K., Dutt, N., Liljeberg, P., Salanterä, S., Nelson, A.M., Rahmani, A.M.: Pain assessment tool with electrodermal activity for postoperative patients: method validation study. JMIR Mhealth Uhealth 9(5), e25258 (2021)
Aqajari, S.A.H., Naeini, E.K., Mehrabadi, M.A., Labbaf, S., Rahmani, A.M., Dutt, N.: GSR analysis for stress: Development and validation of an open source tool for noisy naturalistic GSR data (2020). arXiv preprint arXiv:2005.01834
Arif-Rahu, M., Grap, M.J.: Facial expression and pain in the critically ill non-communicative patient: state of science review. Intensive Crit. Care Nursing 26(6), 343–352 (2010)
Azimi, I., et al.: HiCH: hierarchical fog-assisted computing architecture for healthcare IoT. ACM Trans. Embedded Comput. Syst. 16(5), 1–20 (2017)
Bao, W., Li, W., Delicato, F.C., Pires, P.F., Yuan, D., Zhou, B.B., Zomaya, A.Y.: Cost-effective processing in fog-integrated internet of things ecosystems. In: Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems, pp. 99–108 (2017)
Barbera, M.V., Kosta, S., Mei, A., Stefa, J.: To offload or not to offload? The bandwidth and energy costs of mobile cloud computing. In: 2013 Proceedings IEEE Infocom, pp. 1285–1293. IEEE, Piscataway (2013)
Barr, J., Fraser, G.L., Puntillo, K., Ely, E.W., Gélinas, C., Dasta, J.F., Davidson, J.E., Devlin, J.W., Kress, J.P., Joffe, A.M., et al.: Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit. Care Med. 41(1), 263–306 (2013)
Barreto, A., Hou, S., Borsa, D., Silver, D., Precup, D.: Fast reinforcement learning with generalized policy updates. Proc. Natl. Acad. Sci. 117(48), 30079–30087 (2020). https://www.pnas.org/doi/abs/10.1073/pnas.1907370117
Breivik, H., Borchgrevink, P.C., Allen, S.M., Rosseland, L.A., Romundstad, L., Breivik Hals, E., Kvarstein, G., Stubhaug, A.: Assessment of pain. Br. J. Anaesth. 101(1), 17–24 (2008)
Cao, R., Aqajari, S., Kasaeyan Naeini, E., Rahmani, A.M.: Objective pain assessment using wrist-based ppg signals: A respiratory rate based method. In: 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Piscataway (2021). Accepted for publication
Cao, X., Wang, F., Xu, J., Zhang, R., Cui, S.: Joint computation and communication cooperation for mobile edge computing. In: 2018 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pp. 1–6. IEEE, Piscataway (2018)
Chamola, V., Tham, C.K., Chalapathi, G.S.: Latency aware mobile task assignment and load balancing for edge cloudlets. In: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 587–592. IEEE, Piscataway (2017)
Chang, Z., Zhou, Z., Ristaniemi, T., Niu, Z.: Energy efficient optimization for computation offloading in fog computing system. In: GLOBECOM 2017-2017 IEEE Global Communications Conference, pp. 1–6. IEEE, Piscataway (2017)
Chatzaki, C., Pediaditis, M., Vavoulas, G., Tsiknakis, M.: Human daily activity and fall recognition using a smartphone’s acceleration sensor. In: International Conference on Information and Communication Technologies for Ageing Well and e-Health, pp. 100–118. Springer, Berlin (2016)
Chetty, G., Yamin, M.: Intelligent human activity recognition scheme for eHealth applications. Malaysian J. Comput. Sci. 28(1), 59–69 (2015)
Dogan, A.Y., Constantin, J., Ruggiero, M., Burg, A., Atienza, D.: Multi-core architecture design for ultra-low-power wearable health monitoring systems. In: 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 988–993. IEEE, Piscataway (2012)
Duch, L., Basu, S., Braojos, R., Ansaloni, G., Pozzi, L., Atienza, D.: Heal-wear: an ultra-low power heterogeneous system for bio-signal analysis. IEEE Trans. Circuits Syst. I: Regul. Pap. 64(9), 2448–2461 (2017)
Eshratifar, A.E., Abrishami, M.S., Pedram, M.: JointDNN: an efficient training and inference engine for intelligent mobile cloud computing services. IEEE Trans. Mobile Comput. 20(2), 565–576 (2019)
Farahani, B., Barzegari, M., Aliee, F.S., Shaik, K.A.: Towards collaborative intelligent IoT eHealth: from device to fog, and cloud. Microprocess. Microsyst. 72, 102938 (2020)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)
Gia, T.N., Jiang, M., Rahmani, A.M., Westerlund, T., Liljeberg, P., Tenhunen, H.: Fog computing in healthcare internet of things: a case study on ECG feature extraction. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, pp. 356–363. IEEE, Piscataway (2015)
Greene, S., Thapliyal, H., Caban-Holt, A.: A survey of affective computing for stress detection: Evaluating technologies in stress detection for better health. IEEE Consum. Electron. Mag. 5(4), 44–56 (2016)
Gruss, S., Treister, R., Werner, P., Traue, H.C., Crawcour, S., Andrade, A., Walter, S.: Pain intensity recognition rates via biopotential feature patterns with support vector machines. PLoS One 10(10), e0140330 (2015)
Gupta, D., Rodrigues, J.J., Peng, S.L., Nguyen, N.: Artificial intelligence for eHealth. Front. Public Health 10 (2022)
Han, H.J., et al.: Objective stress monitoring based on wearable sensors in everyday settings. J. Med. Eng. Technol. 44(4), 177–189 (2020)
Jiang, M., Mieronkoski, R., Rahmani, A.M., Hagelberg, N., Salanterä, S., Liljeberg, P.: Ultra-short-term analysis of heart rate variability for real-time acute pain monitoring with wearable electronics. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1025–1032. IEEE, Piscataway (2017)
Ju, W., Bao, W., Ge, L., Yuan, D.: Dynamic Early Exit Scheduling for Deep Neural Network Inference through Contextual Bandits, pp. 823–832. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3459637.3482335
Kächele, M., Thiam, P., Amirian, M., Werner, P., Walter, S., Schwenker, F., Palm, G.: Multimodal data fusion for person-independent, continuous estimation of pain intensity. In: Iliadis, L., Jayne, C. (eds.) Engineering Applications of Neural Networks, pp. 275–285. Springer, Cham (2015)
Kächele, M., Werner, P., Al-Hamadi, A., Palm, G., Walter, S., Schwenker, F.: Bio-visual fusion for person-independent recognition of pain intensity. In: International Workshop on Multiple Classifier Systems, pp. 220–230. Springer, Berlin (2015)
Kasaeyan Naeini, E., Jiang, M., Syrjälä, E., Mieronkoski, R., Calderon, M.D., Zheng, K., Dutt, N., Liljeberg, P., Salanterä, S., Nelson, A., Rahmani, A.M.: Research protocol for the smart pain assessment employing behavioral and physiologic indicators. In: JMIR Journal of Research Protocols (revision submitted) (2020)
Kasaeyan Naeini, E., Jiang, M., Syrjälä, E., Calderon, M.D., Mieronkoski, R., Zheng, K., Dutt, N., Liljeberg, P., Salanterä, S., Nelson, A.M., Rahmani, A.M.: Prospective study evaluating a pain assessment tool in a postoperative environment: Protocol for algorithm testing and enhancement. JMIR Res. Protoc. 9(7), e17783 (2020)
Kasaeyan Naeini, E., Shahhosseini, S., Subramanian, A., Yin, T., Rahmani, A.M., Dutt, N.: An edge-assisted and smart system for real-time pain monitoring. In: 2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 47–52 (2019)
Kasaeyan Naeini, E., Subramanian, A., Calderon, M.D., Zheng, K., Dutt, N., Liljeberg, P., Salantera, S., Nelson, A.M., Rahmani, A.M.: Pain recognition with electrocardiographic features in postoperative patients: method validation study. J. Med. Int. Res. 23(5), e25079 (2021)
Kattepur, A., Dohare, H., Mushunuri, V., Rath, H.K., Simha, A.: Resource constrained offloading in fog computing. In: Proceedings of the 1st Workshop on Middleware for Edge Clouds & Cloudlets, pp. 1–6 (2016)
Khan, M.A., Alkaabi, N.: Rebirth of distributed ai—a review of eHealth research. Sensors 21(15), 4999 (2021)
Khelifi, H., Luo, S., Nour, B., Sellami, A., Moungla, H., Ahmed, S.H., Guizani, M.: Bringing deep learning at the edge of information-centric internet of things. IEEE Commun. Lett. 23(1), 52–55 (2018)
Koelstra, S., Muhl, C., Soleymani, M., Lee, J.S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: DEAP: A database for emotion analysis; using physiological signals. IEEE Trans. Affective Comput. 3(1), 18–31 (2011)
Kreps, G.L., Neuhauser, L.: New directions in eHealth communication: opportunities and challenges. Patient Educ. Couns. 78(3), 329–336 (2010)
Kwak, N., Choi, C.H.: Input feature selection for classification problems. IEEE Trans. Neural Netw. 13(1), 143–159 (2002)
Laitala, J., Jiang, M., Syrjälä, E., Naeini, E.K., Airola, A., Rahmani, A.M., Dutt, n.d., Liljeberg, P.: Robust ECG R-peak detection using LSTM. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 1104–1111 (2020)
Liu, J., Mao, Y., Zhang, J., Letaief, K.B.: Delay-optimal computation task scheduling for mobile-edge computing systems. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1451–1455. IEEE, Piscataway (2016)
Lou, P., Shi, L., Zhang, X., Xiao, Z., Yan, J.: A data-driven adaptive sampling method based on edge computing. Sensors 20(8) (2020). https://www.mdpi.com/1424-8220/20/8/2174
Ma, M., Ren, J., Zhao, L., Tulyakov, S., Wu, C., Peng, X.: Smil: Multimodal learning with severely missing modality (2021). arXiv preprint arXiv:2103.05677
Mach, P., Becvar, Z.: Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutorials 19(3), 1628–1656 (2017)
Mao, Y., Zhang, J., Song, S., Letaief, K.B.: Power-delay tradeoff in multi-user mobile-edge computing systems. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE, Piscataway (2016)
Merskey, H.: Pain terms: a list with definitions and notes on usage. Recommended by the IASP subcommittee on taxonomy. Pain 6, 249–252 (1979)
Montesinos, V., Dell’Agnola, F., Arza, A., Aminifar, A., Atienza, D.: Multi-modal acute stress recognition using off-the-shelf wearable devices. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2196–2201 (2019)
Mousavi, S.S., Schukat, M., Howley, E.: Deep reinforcement learning: an overview. In: Proceedings of SAI Intelligent Systems Conference, pp. 426–440. Springer, Berlin (2016)
Naeini, E.K., Azimi, I., Rahmani, A.M., Liljeberg, P., Dutt, N.: A real-time ppg quality assessment approach for healthcare Internet-of-Things. Proc. Comput. Sci. 151, 551–558 (2019)
Naeini, E.K., Shahhosseini, S., Kanduri, A., Liljeberg, P., Rahmani, A.M., Dutt, N.: AMSER: Adaptive multi-modal sensing for energy efficient and resilient eHealth systems. IEEE/ACM Design, Automation and Test in Europe Conference (DATE’22) (2022)
Nan, Y., Li, W., Bao, W., Delicato, F.C., Pires, P.F., Zomaya, A.Y.: A dynamic tradeoff data processing framework for delay-sensitive applications in cloud of things systems. J. Parallel Distrib. Comput. 112, 53–66 (2018)
Ning, H., Ye, X., Sada, A.B., Mao, L., Daneshmand, M.: An attention mechanism inspired selective sensing framework for physical-cyber mapping in internet of things. IEEE Internet Things J. 6(6), 9531–9544 (2019)
Park, J., Samarakoon, S., Bennis, M., Debbah, M.: Wireless network intelligence at the edge. Proc. IEEE 107(11), 2204–2239 (2019)
Rahmani, A.M., Gia, T.N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., Liljeberg, P.: Exploiting smart e-health gateways at the edge of healthcare Internet-of-Things: a fog computing approach. Fut. Gener. Comput. Syst. 78, 641–658 (2018)
Schapire, R.E.: Explaining AdaBoost. In: Empirical Inference, pp. 37–52. Springer, Berlin (2013)
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
Sen, T., Shen, H.: Machine learning based timeliness-guaranteed and energy-efficient task assignment in edge computing systems. In: 2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC), pp. 1–10. IEEE, Piscataway (2019)
Seo, D., Shahhosseini, S., Mehrabadi, M.A., Donyanavard, B., Lim, S.S., Rahmani, A.M., Dutt, N.: Dynamic iFogSim: A framework for full-stack simulation of dynamic resource management in IoT systems. In: 2020 International Conference on Omni-Layer Intelligent Systems (COINS), pp. 1–6. IEEE, Piscataway (2020)
Shahhosseini, S., Anzanpour, A., Azimi, I., Labbaf, S., Seo, D., Lim, S.S., Liljeberg, P., Dutt, N., Rahmani, A.M.: Exploring computation offloading in IoT systems. Inform. Syst. 107, 101860 (2022)
Shahhosseini, S., Azimi, I., Anzanpour, A., Jantsch, A., Liljeberg, P., Dutt, N., Rahmani, A.M.: Dynamic computation migration at the edge: is there an optimal choice? In: Proceedings of the 2019 on Great Lakes Symposium on VLSI, pp. 519–524 (2019)
Shahhosseini, S., Hu, T., Seo, D., Kanduri, A., Donyanavard, B., Rahmani, A.M., Dutt, N.: Hybrid learning for orchestrating deep learning inference in multi-user edge-cloud networks (2022). arXiv preprint arXiv:2202.11098
Shahhosseini, S., Kanduri, A., Mehrabadi, M.A., Naeini, E.K., Seo, D., Lim, S.S., Rahmani, A.M., Dutt, N.: Towards smart and efficient health monitoring using edge-enabled situational-awareness. In: 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 1–4. IEEE, Piscataway (2021)
Shahhosseini, S., Seo, D., Kanduri, A., Hu, T., Lim, S.s., Donyanavard, B., Rahmani, A.M., Dutt, N.: Online learning for orchestration of inference in multi-user end-edge-cloud networks. In: ACM Transactions on Embedded Computing Systems (TECS) (2022)
Sheng, Z., Mahapatra, C., Leung, V.C., Chen, M., Sahu, P.K.: Energy efficient cooperative computing in mobile wireless sensor networks. IEEE Trans. Cloud Comput. 6(1), 114–126 (2015)
Stites, M.: Observational pain scales in critically ill adults. Crit. Care Nurse 33(3), 68–78 (2013)
Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press (2018)
Teerapittayanon, S., McDanel, B., Kung, H.T.: BranchyNet: fast inference via early exiting from deep neural networks. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2464–2469 (2016)
Teerapittayanon, S., McDanel, B., Kung, H.T.: Distributed deep neural networks over the cloud, the edge and end devices. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 328–339. IEEE, Piscataway (2017)
Tompkins, D.A., Hobelmann, J.G., Compton, P.: Providing chronic pain management in the “fifth vital sign” era: historical and treatment perspectives on a modern-day medical dilemma. Drug Alcohol Depend. 173, S11–S21 (2017). Prescription Opioids: new perspectives and research on their role in chronic pain management and addiction
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Versluis, A., van Luenen, S., Meijer, E., Honkoop, P.J., Pinnock, H., Mohr, D.C., Neves, A.L., Chavannes, N.H., van der Kleij, R.M.: Series: eHealth in primary care. Part 4: addressing the challenges of implementation. Eur. J. Gen. Practice 26(1), 140–145 (2020)
Wang, X., Han, Y., Leung, V.C.M., Niyato, D., Yan, X., Chen, X.: Convergence of edge computing and deep learning: a comprehensive survey. IEEE Commun. Surv. Tutorials 22(2), 869–904 (2020)
Wang, X., Han, Y., Leung, V.C., Niyato, D., Yan, X., Chen, X.: Convergence of edge computing and deep learning: a comprehensive survey. IEEE Commun. Surv. Tutorials 22(2), 869–904 (2020)
Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. 53(3), 1–34 (2020)
Werner, P., Al-Hamadi, A., Limbrecht-Ecklundt, K., Walter, S., Gruss, S., Traue, H.C.: Automatic pain assessment with facial activity descriptors. IEEE Trans. Affect. Comput. 8(3), 286–299 (2016)
Werner, P., Al-Hamadi, A., Niese, R., Walter, S., Gruss, S., Traue, H.C.: Towards pain monitoring: Facial expression, head pose, a new database, an automatic system and remaining challenges. In: Proceedings of the British Machine Vision Conference, pp. 1–13 (2013)
Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)
You, C., Huang, K.: Exploiting non-causal CPU-state information for energy-efficient mobile cooperative computing. IEEE Trans. Wirel. Commun. 17(6), 4104–4117 (2018)
Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., Pan, L., Maharjan, S., Zhang, Y.: Energy-efficient offloading for mobile edge computing in 5g heterogeneous networks. IEEE Access 4, 5896–5907 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kanduri, A. et al. (2024). Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications. In: Pasricha, S., Shafique, M. (eds) Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-40677-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-40677-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40676-8
Online ISBN: 978-3-031-40677-5
eBook Packages: EngineeringEngineering (R0)