Nothing Special   »   [go: up one dir, main page]

Skip to main content

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications

  • Chapter
  • First Online:
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing

Abstract

Smart eHealth applications deliver personalized and preventive digital healthcare services to clients through remote sensing, continuous monitoring, and data analytics. Smart eHealth applications sense input data from multiple modalities, transmit the data to edge and/or cloud nodes, and process the data with compute-intensive machine learning (ML) algorithms. Run-time variations with continuous stream of noisy input data, unreliable network connection, computational requirements of ML algorithms, and choice of compute placement among sensor–edge–cloud layers affect the efficiency of ML-driven eHealth applications. In this chapter, we present edge-centric techniques for optimized compute placement, exploration of accuracy–performance trade-offs, and cross-layered sense–compute co-optimization for ML-driven eHealth applications. We demonstrate the practical use cases of smart eHealth applications in everyday settings, through a sensor–edge–cloud framework for an objective pain assessment case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adibuzzaman, M., Ostberg, C., Ahamed, S., Povinelli, R., Sindhu, B., Love, R., Kawsar, F., Ahsan, G.M.T.: Assessment of pain using facial pictures taken with a smartphone. In: 2015 IEEE 39th Annual Computer Software and Applications Conference, vol. 2, pp. 726–731. IEEE, Piscataway (2015)

    Google Scholar 

  2. Aqajari, S.A.H., Cao, R., Kasaeyan Naeini, E., Calderon, M.D., Zheng, K., Dutt, N., Liljeberg, P., Salanterä, S., Nelson, A.M., Rahmani, A.M.: Pain assessment tool with electrodermal activity for postoperative patients: method validation study. JMIR Mhealth Uhealth 9(5), e25258 (2021)

    Article  Google Scholar 

  3. Aqajari, S.A.H., Naeini, E.K., Mehrabadi, M.A., Labbaf, S., Rahmani, A.M., Dutt, N.: GSR analysis for stress: Development and validation of an open source tool for noisy naturalistic GSR data (2020). arXiv preprint arXiv:2005.01834

    Google Scholar 

  4. Arif-Rahu, M., Grap, M.J.: Facial expression and pain in the critically ill non-communicative patient: state of science review. Intensive Crit. Care Nursing 26(6), 343–352 (2010)

    Article  Google Scholar 

  5. Azimi, I., et al.: HiCH: hierarchical fog-assisted computing architecture for healthcare IoT. ACM Trans. Embedded Comput. Syst. 16(5), 1–20 (2017)

    Article  Google Scholar 

  6. Bao, W., Li, W., Delicato, F.C., Pires, P.F., Yuan, D., Zhou, B.B., Zomaya, A.Y.: Cost-effective processing in fog-integrated internet of things ecosystems. In: Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems, pp. 99–108 (2017)

    Google Scholar 

  7. Barbera, M.V., Kosta, S., Mei, A., Stefa, J.: To offload or not to offload? The bandwidth and energy costs of mobile cloud computing. In: 2013 Proceedings IEEE Infocom, pp. 1285–1293. IEEE, Piscataway (2013)

    Google Scholar 

  8. Barr, J., Fraser, G.L., Puntillo, K., Ely, E.W., Gélinas, C., Dasta, J.F., Davidson, J.E., Devlin, J.W., Kress, J.P., Joffe, A.M., et al.: Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit. Care Med. 41(1), 263–306 (2013)

    Article  Google Scholar 

  9. Barreto, A., Hou, S., Borsa, D., Silver, D., Precup, D.: Fast reinforcement learning with generalized policy updates. Proc. Natl. Acad. Sci. 117(48), 30079–30087 (2020). https://www.pnas.org/doi/abs/10.1073/pnas.1907370117

    Article  Google Scholar 

  10. Breivik, H., Borchgrevink, P.C., Allen, S.M., Rosseland, L.A., Romundstad, L., Breivik Hals, E., Kvarstein, G., Stubhaug, A.: Assessment of pain. Br. J. Anaesth. 101(1), 17–24 (2008)

    Article  Google Scholar 

  11. Cao, R., Aqajari, S., Kasaeyan Naeini, E., Rahmani, A.M.: Objective pain assessment using wrist-based ppg signals: A respiratory rate based method. In: 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Piscataway (2021). Accepted for publication

    Google Scholar 

  12. Cao, X., Wang, F., Xu, J., Zhang, R., Cui, S.: Joint computation and communication cooperation for mobile edge computing. In: 2018 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pp. 1–6. IEEE, Piscataway (2018)

    Google Scholar 

  13. Chamola, V., Tham, C.K., Chalapathi, G.S.: Latency aware mobile task assignment and load balancing for edge cloudlets. In: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 587–592. IEEE, Piscataway (2017)

    Google Scholar 

  14. Chang, Z., Zhou, Z., Ristaniemi, T., Niu, Z.: Energy efficient optimization for computation offloading in fog computing system. In: GLOBECOM 2017-2017 IEEE Global Communications Conference, pp. 1–6. IEEE, Piscataway (2017)

    Google Scholar 

  15. Chatzaki, C., Pediaditis, M., Vavoulas, G., Tsiknakis, M.: Human daily activity and fall recognition using a smartphone’s acceleration sensor. In: International Conference on Information and Communication Technologies for Ageing Well and e-Health, pp. 100–118. Springer, Berlin (2016)

    Google Scholar 

  16. Chetty, G., Yamin, M.: Intelligent human activity recognition scheme for eHealth applications. Malaysian J. Comput. Sci. 28(1), 59–69 (2015)

    Google Scholar 

  17. Dogan, A.Y., Constantin, J., Ruggiero, M., Burg, A., Atienza, D.: Multi-core architecture design for ultra-low-power wearable health monitoring systems. In: 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 988–993. IEEE, Piscataway (2012)

    Google Scholar 

  18. Duch, L., Basu, S., Braojos, R., Ansaloni, G., Pozzi, L., Atienza, D.: Heal-wear: an ultra-low power heterogeneous system for bio-signal analysis. IEEE Trans. Circuits Syst. I: Regul. Pap. 64(9), 2448–2461 (2017)

    Article  Google Scholar 

  19. Eshratifar, A.E., Abrishami, M.S., Pedram, M.: JointDNN: an efficient training and inference engine for intelligent mobile cloud computing services. IEEE Trans. Mobile Comput. 20(2), 565–576 (2019)

    Article  Google Scholar 

  20. Farahani, B., Barzegari, M., Aliee, F.S., Shaik, K.A.: Towards collaborative intelligent IoT eHealth: from device to fog, and cloud. Microprocess. Microsyst. 72, 102938 (2020)

    Article  Google Scholar 

  21. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  22. Gia, T.N., Jiang, M., Rahmani, A.M., Westerlund, T., Liljeberg, P., Tenhunen, H.: Fog computing in healthcare internet of things: a case study on ECG feature extraction. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, pp. 356–363. IEEE, Piscataway (2015)

    Google Scholar 

  23. Greene, S., Thapliyal, H., Caban-Holt, A.: A survey of affective computing for stress detection: Evaluating technologies in stress detection for better health. IEEE Consum. Electron. Mag. 5(4), 44–56 (2016)

    Article  Google Scholar 

  24. Gruss, S., Treister, R., Werner, P., Traue, H.C., Crawcour, S., Andrade, A., Walter, S.: Pain intensity recognition rates via biopotential feature patterns with support vector machines. PLoS One 10(10), e0140330 (2015)

    Article  Google Scholar 

  25. Gupta, D., Rodrigues, J.J., Peng, S.L., Nguyen, N.: Artificial intelligence for eHealth. Front. Public Health 10 (2022)

    Google Scholar 

  26. Han, H.J., et al.: Objective stress monitoring based on wearable sensors in everyday settings. J. Med. Eng. Technol. 44(4), 177–189 (2020)

    Article  Google Scholar 

  27. Jiang, M., Mieronkoski, R., Rahmani, A.M., Hagelberg, N., Salanterä, S., Liljeberg, P.: Ultra-short-term analysis of heart rate variability for real-time acute pain monitoring with wearable electronics. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1025–1032. IEEE, Piscataway (2017)

    Google Scholar 

  28. Ju, W., Bao, W., Ge, L., Yuan, D.: Dynamic Early Exit Scheduling for Deep Neural Network Inference through Contextual Bandits, pp. 823–832. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3459637.3482335

  29. Kächele, M., Thiam, P., Amirian, M., Werner, P., Walter, S., Schwenker, F., Palm, G.: Multimodal data fusion for person-independent, continuous estimation of pain intensity. In: Iliadis, L., Jayne, C. (eds.) Engineering Applications of Neural Networks, pp. 275–285. Springer, Cham (2015)

    Chapter  Google Scholar 

  30. Kächele, M., Werner, P., Al-Hamadi, A., Palm, G., Walter, S., Schwenker, F.: Bio-visual fusion for person-independent recognition of pain intensity. In: International Workshop on Multiple Classifier Systems, pp. 220–230. Springer, Berlin (2015)

    Google Scholar 

  31. Kasaeyan Naeini, E., Jiang, M., Syrjälä, E., Mieronkoski, R., Calderon, M.D., Zheng, K., Dutt, N., Liljeberg, P., Salanterä, S., Nelson, A., Rahmani, A.M.: Research protocol for the smart pain assessment employing behavioral and physiologic indicators. In: JMIR Journal of Research Protocols (revision submitted) (2020)

    Google Scholar 

  32. Kasaeyan Naeini, E., Jiang, M., Syrjälä, E., Calderon, M.D., Mieronkoski, R., Zheng, K., Dutt, N., Liljeberg, P., Salanterä, S., Nelson, A.M., Rahmani, A.M.: Prospective study evaluating a pain assessment tool in a postoperative environment: Protocol for algorithm testing and enhancement. JMIR Res. Protoc. 9(7), e17783 (2020)

    Article  Google Scholar 

  33. Kasaeyan Naeini, E., Shahhosseini, S., Subramanian, A., Yin, T., Rahmani, A.M., Dutt, N.: An edge-assisted and smart system for real-time pain monitoring. In: 2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 47–52 (2019)

    Google Scholar 

  34. Kasaeyan Naeini, E., Subramanian, A., Calderon, M.D., Zheng, K., Dutt, N., Liljeberg, P., Salantera, S., Nelson, A.M., Rahmani, A.M.: Pain recognition with electrocardiographic features in postoperative patients: method validation study. J. Med. Int. Res. 23(5), e25079 (2021)

    Google Scholar 

  35. Kattepur, A., Dohare, H., Mushunuri, V., Rath, H.K., Simha, A.: Resource constrained offloading in fog computing. In: Proceedings of the 1st Workshop on Middleware for Edge Clouds & Cloudlets, pp. 1–6 (2016)

    Google Scholar 

  36. Khan, M.A., Alkaabi, N.: Rebirth of distributed ai—a review of eHealth research. Sensors 21(15), 4999 (2021)

    Article  Google Scholar 

  37. Khelifi, H., Luo, S., Nour, B., Sellami, A., Moungla, H., Ahmed, S.H., Guizani, M.: Bringing deep learning at the edge of information-centric internet of things. IEEE Commun. Lett. 23(1), 52–55 (2018)

    Article  Google Scholar 

  38. Koelstra, S., Muhl, C., Soleymani, M., Lee, J.S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: DEAP: A database for emotion analysis; using physiological signals. IEEE Trans. Affective Comput. 3(1), 18–31 (2011)

    Article  Google Scholar 

  39. Kreps, G.L., Neuhauser, L.: New directions in eHealth communication: opportunities and challenges. Patient Educ. Couns. 78(3), 329–336 (2010)

    Article  Google Scholar 

  40. Kwak, N., Choi, C.H.: Input feature selection for classification problems. IEEE Trans. Neural Netw. 13(1), 143–159 (2002)

    Article  Google Scholar 

  41. Laitala, J., Jiang, M., Syrjälä, E., Naeini, E.K., Airola, A., Rahmani, A.M., Dutt, n.d., Liljeberg, P.: Robust ECG R-peak detection using LSTM. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 1104–1111 (2020)

    Google Scholar 

  42. Liu, J., Mao, Y., Zhang, J., Letaief, K.B.: Delay-optimal computation task scheduling for mobile-edge computing systems. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1451–1455. IEEE, Piscataway (2016)

    Google Scholar 

  43. Lou, P., Shi, L., Zhang, X., Xiao, Z., Yan, J.: A data-driven adaptive sampling method based on edge computing. Sensors 20(8) (2020). https://www.mdpi.com/1424-8220/20/8/2174

  44. Ma, M., Ren, J., Zhao, L., Tulyakov, S., Wu, C., Peng, X.: Smil: Multimodal learning with severely missing modality (2021). arXiv preprint arXiv:2103.05677

    Google Scholar 

  45. Mach, P., Becvar, Z.: Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutorials 19(3), 1628–1656 (2017)

    Article  Google Scholar 

  46. Mao, Y., Zhang, J., Song, S., Letaief, K.B.: Power-delay tradeoff in multi-user mobile-edge computing systems. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE, Piscataway (2016)

    Google Scholar 

  47. Merskey, H.: Pain terms: a list with definitions and notes on usage. Recommended by the IASP subcommittee on taxonomy. Pain 6, 249–252 (1979)

    Google Scholar 

  48. Montesinos, V., Dell’Agnola, F., Arza, A., Aminifar, A., Atienza, D.: Multi-modal acute stress recognition using off-the-shelf wearable devices. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2196–2201 (2019)

    Google Scholar 

  49. Mousavi, S.S., Schukat, M., Howley, E.: Deep reinforcement learning: an overview. In: Proceedings of SAI Intelligent Systems Conference, pp. 426–440. Springer, Berlin (2016)

    Google Scholar 

  50. Naeini, E.K., Azimi, I., Rahmani, A.M., Liljeberg, P., Dutt, N.: A real-time ppg quality assessment approach for healthcare Internet-of-Things. Proc. Comput. Sci. 151, 551–558 (2019)

    Article  Google Scholar 

  51. Naeini, E.K., Shahhosseini, S., Kanduri, A., Liljeberg, P., Rahmani, A.M., Dutt, N.: AMSER: Adaptive multi-modal sensing for energy efficient and resilient eHealth systems. IEEE/ACM Design, Automation and Test in Europe Conference (DATE’22) (2022)

    Google Scholar 

  52. Nan, Y., Li, W., Bao, W., Delicato, F.C., Pires, P.F., Zomaya, A.Y.: A dynamic tradeoff data processing framework for delay-sensitive applications in cloud of things systems. J. Parallel Distrib. Comput. 112, 53–66 (2018)

    Article  Google Scholar 

  53. Ning, H., Ye, X., Sada, A.B., Mao, L., Daneshmand, M.: An attention mechanism inspired selective sensing framework for physical-cyber mapping in internet of things. IEEE Internet Things J. 6(6), 9531–9544 (2019)

    Article  Google Scholar 

  54. Park, J., Samarakoon, S., Bennis, M., Debbah, M.: Wireless network intelligence at the edge. Proc. IEEE 107(11), 2204–2239 (2019)

    Article  Google Scholar 

  55. Rahmani, A.M., Gia, T.N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., Liljeberg, P.: Exploiting smart e-health gateways at the edge of healthcare Internet-of-Things: a fog computing approach. Fut. Gener. Comput. Syst. 78, 641–658 (2018)

    Article  Google Scholar 

  56. Schapire, R.E.: Explaining AdaBoost. In: Empirical Inference, pp. 37–52. Springer, Berlin (2013)

    Google Scholar 

  57. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  58. Sen, T., Shen, H.: Machine learning based timeliness-guaranteed and energy-efficient task assignment in edge computing systems. In: 2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC), pp. 1–10. IEEE, Piscataway (2019)

    Google Scholar 

  59. Seo, D., Shahhosseini, S., Mehrabadi, M.A., Donyanavard, B., Lim, S.S., Rahmani, A.M., Dutt, N.: Dynamic iFogSim: A framework for full-stack simulation of dynamic resource management in IoT systems. In: 2020 International Conference on Omni-Layer Intelligent Systems (COINS), pp. 1–6. IEEE, Piscataway (2020)

    Google Scholar 

  60. Shahhosseini, S., Anzanpour, A., Azimi, I., Labbaf, S., Seo, D., Lim, S.S., Liljeberg, P., Dutt, N., Rahmani, A.M.: Exploring computation offloading in IoT systems. Inform. Syst. 107, 101860 (2022)

    Article  Google Scholar 

  61. Shahhosseini, S., Azimi, I., Anzanpour, A., Jantsch, A., Liljeberg, P., Dutt, N., Rahmani, A.M.: Dynamic computation migration at the edge: is there an optimal choice? In: Proceedings of the 2019 on Great Lakes Symposium on VLSI, pp. 519–524 (2019)

    Google Scholar 

  62. Shahhosseini, S., Hu, T., Seo, D., Kanduri, A., Donyanavard, B., Rahmani, A.M., Dutt, N.: Hybrid learning for orchestrating deep learning inference in multi-user edge-cloud networks (2022). arXiv preprint arXiv:2202.11098

    Google Scholar 

  63. Shahhosseini, S., Kanduri, A., Mehrabadi, M.A., Naeini, E.K., Seo, D., Lim, S.S., Rahmani, A.M., Dutt, N.: Towards smart and efficient health monitoring using edge-enabled situational-awareness. In: 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 1–4. IEEE, Piscataway (2021)

    Google Scholar 

  64. Shahhosseini, S., Seo, D., Kanduri, A., Hu, T., Lim, S.s., Donyanavard, B., Rahmani, A.M., Dutt, N.: Online learning for orchestration of inference in multi-user end-edge-cloud networks. In: ACM Transactions on Embedded Computing Systems (TECS) (2022)

    Google Scholar 

  65. Sheng, Z., Mahapatra, C., Leung, V.C., Chen, M., Sahu, P.K.: Energy efficient cooperative computing in mobile wireless sensor networks. IEEE Trans. Cloud Comput. 6(1), 114–126 (2015)

    Article  Google Scholar 

  66. Stites, M.: Observational pain scales in critically ill adults. Crit. Care Nurse 33(3), 68–78 (2013)

    Article  Google Scholar 

  67. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press (2018)

    Google Scholar 

  68. Teerapittayanon, S., McDanel, B., Kung, H.T.: BranchyNet: fast inference via early exiting from deep neural networks. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2464–2469 (2016)

    Google Scholar 

  69. Teerapittayanon, S., McDanel, B., Kung, H.T.: Distributed deep neural networks over the cloud, the edge and end devices. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 328–339. IEEE, Piscataway (2017)

    Google Scholar 

  70. Tompkins, D.A., Hobelmann, J.G., Compton, P.: Providing chronic pain management in the “fifth vital sign” era: historical and treatment perspectives on a modern-day medical dilemma. Drug Alcohol Depend. 173, S11–S21 (2017). Prescription Opioids: new perspectives and research on their role in chronic pain management and addiction

    Google Scholar 

  71. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  72. Versluis, A., van Luenen, S., Meijer, E., Honkoop, P.J., Pinnock, H., Mohr, D.C., Neves, A.L., Chavannes, N.H., van der Kleij, R.M.: Series: eHealth in primary care. Part 4: addressing the challenges of implementation. Eur. J. Gen. Practice 26(1), 140–145 (2020)

    Google Scholar 

  73. Wang, X., Han, Y., Leung, V.C.M., Niyato, D., Yan, X., Chen, X.: Convergence of edge computing and deep learning: a comprehensive survey. IEEE Commun. Surv. Tutorials 22(2), 869–904 (2020)

    Article  Google Scholar 

  74. Wang, X., Han, Y., Leung, V.C., Niyato, D., Yan, X., Chen, X.: Convergence of edge computing and deep learning: a comprehensive survey. IEEE Commun. Surv. Tutorials 22(2), 869–904 (2020)

    Article  Google Scholar 

  75. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. 53(3), 1–34 (2020)

    Article  Google Scholar 

  76. Werner, P., Al-Hamadi, A., Limbrecht-Ecklundt, K., Walter, S., Gruss, S., Traue, H.C.: Automatic pain assessment with facial activity descriptors. IEEE Trans. Affect. Comput. 8(3), 286–299 (2016)

    Article  Google Scholar 

  77. Werner, P., Al-Hamadi, A., Niese, R., Walter, S., Gruss, S., Traue, H.C.: Towards pain monitoring: Facial expression, head pose, a new database, an automatic system and remaining challenges. In: Proceedings of the British Machine Vision Conference, pp. 1–13 (2013)

    Google Scholar 

  78. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)

    Article  Google Scholar 

  79. You, C., Huang, K.: Exploiting non-causal CPU-state information for energy-efficient mobile cooperative computing. IEEE Trans. Wirel. Commun. 17(6), 4104–4117 (2018)

    Article  Google Scholar 

  80. Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., Pan, L., Maharjan, S., Zhang, Y.: Energy-efficient offloading for mobile edge computing in 5g heterogeneous networks. IEEE Access 4, 5896–5907 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kanduri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanduri, A. et al. (2024). Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications. In: Pasricha, S., Shafique, M. (eds) Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-40677-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40677-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40676-8

  • Online ISBN: 978-3-031-40677-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics