Nothing Special   »   [go: up one dir, main page]

Skip to main content

Kernel-Based Feature Extraction for Time Series Clustering

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14117))

Abstract

Time series clustering is a key unsupervised data mining technique that has been widely applied in various domains for discovering patterns, insights and applications. Extracting meaningful features from time series is crucial for clustering. However, most existing feature extraction algorithms fail to capture the complex and dynamic patterns in time series data. In this paper, we propose a novel kernel-based feature extraction algorithm that utilizes a data-dependent kernel function with an efficient dimensionality reduction method. Our algorithm can adapt to the local data distribution and represent high-frequency subsequences of time series effectively. We demonstrate that, with a bag-of-words model, our feature extraction algorithm outperforms other existing methods for time series clustering on many real-world datasets from various domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baum, C.F., Schaffer, M.E., Stillman, S.: Instrumental variables and GMM: estimation and testing. Stand. Genom. Sci. 3(1), 1–31 (2003)

    Google Scholar 

  2. Destefanis, G., Barge, M.T., Brugiapaglia, A., Tassone, S.: The use of principal component analysis (PCA) to characterize beef. Meat Sci. 56(3), 255–259 (2000)

    Article  Google Scholar 

  3. Dvornik, M., Hadji, I., Derpanis, K.G., Garg, A., Jepson, A.: Drop-DTW: aligning common signal between sequences while dropping outliers. Adv. Neural. Inf. Process. Syst. 34, 13782–13793 (2021)

    Google Scholar 

  4. Hatami, N., Gavet, Y., Debayle, J.: Bag of recurrence patterns representation for time-series classification. Pattern Anal. Appl. 22(3), 877–887 (2019)

    Article  MathSciNet  Google Scholar 

  5. Hout, M.C., Papesh, M.H., Goldinger, S.D.: Multidimensional scaling. Wiley Interdisc. Rev. Cogn. Sci. 4(1), 93–103 (2013)

    Article  Google Scholar 

  6. Klaser, A., Marszałek, M., Schmid, C.: A spatio-temporal descriptor based on 3D-gradients. In: BMVC 2008–19th British Machine Vision Conference, pp. 275–281. British Machine Vision Association (2008)

    Google Scholar 

  7. Linardi, M., Palpanas, T.: Scalable, variable-length similarity search in data series: the Ulisse approach. Proc. VLDB Endow. 11(13), 2236–2248 (2018)

    Article  Google Scholar 

  8. Paparrizos, J., Gravano, L.: k-shape: Efficient and accurate clustering of time series. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1855–1870 (2015)

    Google Scholar 

  9. Passalis, N., Tsantekidis, A., Tefas, A., Kanniainen, J., Gabbouj, M., Iosifidis, A.: Time-series classification using neural bag-of-features. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 301–305. IEEE (2017)

    Google Scholar 

  10. Pérez, S.I., Moral-Rubio, S., Criado, R.: A new approach to combine multiplex networks and time series attributes: building intrusion detection systems (IDS) in cybersecurity. Chaos Solitons Fract. 150, 111143 (2021)

    Article  MathSciNet  Google Scholar 

  11. Qin, X., Ting, K.M., Zhu, Y., Lee, V.C.: Nearest-neighbour-induced isolation similarity and its impact on density-based clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4755–4762 (2019)

    Google Scholar 

  12. Sarfraz, S., Koulakis, M., Seibold, C., Stiefelhagen, R.: Hierarchical nearest neighbor graph embedding for efficient dimensionality reduction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 336–345 (2022)

    Google Scholar 

  13. Ting, K.M., Xu, B.C., Washio, T., Zhou, Z.H.: Isolation distributional kernel: a new tool for kernel based anomaly detection. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 198–206 (2020)

    Google Scholar 

  14. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11(Oct), 2837–2854 (2010)

    Google Scholar 

  15. Wang, H., Li, C., Sun, H., Guo, Z., Bai, Y.: Shapelet classification algorithm based on efficient subsequence matching. Data Sci. J. 17 (2018)

    Google Scholar 

  16. Wang, J., McDonald, N., Cochran, A.L., Oluyede, L., Wolfe, M., Prunkl, L.: Health care visits during the COVID-19 pandemic: a spatial and temporal analysis of mobile device data. Health and Place 72, 102679 (2021)

    Article  Google Scholar 

  17. Wang, Y., Perry, M., Whitlock, D., Sutherland, J.W.: Detecting anomalies in time series data from a manufacturing system using recurrent neural networks. J. Manuf. Syst. 62, 823–834 (2022)

    Article  Google Scholar 

  18. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 947–956 (2009)

    Google Scholar 

  19. Zhang, M., Sawchuk, A.A.: Motion primitive-based human activity recognition using a bag-of-features approach. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, pp. 631–640 (2012)

    Google Scholar 

  20. Zhao, J., Itti, L.: Classifying time series using local descriptors with hybrid sampling. IEEE Trans. Knowl. Data Eng. 28(3), 623–637 (2015)

    Article  Google Scholar 

  21. Zhao, J., Itti, L.: shapeDTW: shape dynamic time warping. Pattern Recogn. 74, 171–184 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y. et al. (2023). Kernel-Based Feature Extraction for Time Series Clustering. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14117. Springer, Cham. https://doi.org/10.1007/978-3-031-40283-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40283-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40282-1

  • Online ISBN: 978-3-031-40283-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics