Abstract
Skin segmentation is a critical task in computer vision that has diverse applications in several fields such as biometrics, medical imaging, and video surveillance. Despite its importance, the acquisition of high-quality data remains a significant challenge in skin segmentation research. In this paper, we propose a novel skin segmentation algorithm for single-person images by utilizing a dual-task neural network built on the multi-task learning framework. Specifically, the algorithm employs an encoder-decoder architecture consisting of a shared backbone, two dynamic encoders, and a decoder. The dynamic encoders use dynamic convolution to extract more spatial location information, while the decoder utilizes a query-based dual-task approach that allows each task to utilize the information generated by the other one efficiently. The experimental results indicate that the proposed skin segmentation algorithm outperforms or matches the current state-of-the-art techniques on the benchmark test set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Naji, S., Jalab, H.A., Kareem, S.A.: A survey on skin detection in colored images. Artif. Intell. Rev., 1–47 (2019)
Maidhof, C., Hashemifard, K., Offermann, J., Ziee, M., Flórez-Revuelta, F.: Underneath your clothes: a social and technological perspective on nudity in the context of AAL technology. In: Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments (2022)
Hsieh, I.-S., Fan, K.-C., Lin, C.: A statistic approach to the detection of human faces in color nature scene. Pattern Recognit. 35, 1583–1596 (2002)
Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2014)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9992–10002 (2021)
He, Y., et al.: Semi- supervised skin detection by network with mutual guidance. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2111–2120 (2019)
Xu, H., Sarkar, A., Abbott, A.L.: Color invariant skin segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2905–2914 (2022)
Tarasiewicz, T., Nalepa, J., Kawulok, M.: Skinny: a lightweight U-Net for skin detection and segmentation. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2386–2390 (2020)
Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: Proceedings of the 29th ACM International Conference on Multimedia (2021)
Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. In: Neural Information Processing Systems (2018)
Vandenhende, S., Georgoulis, S., Van Gool, L.: MTI-Net: multi-scale task interaction networks for multi-task learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 527–543. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_31
Yang, B., Bender, G., Le, Q.V., Ngiam, J.: CondConv: conditionally parameterized convolutions for efficient inference. In: Neural Information Processing Systems (2019)
Li, C., Zhou, A., Yao, A.: Omni-dimensional dynamic convolution. arXiv preprint: arXiv:2209.07947 (2022)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv abs/2010.11929 (2020)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Gao, P., Zheng, M., Wang, X., Dai, J., Li, H.: Fast convergence of DETR with spatially modulated co-attention. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3601–3610 (2021)
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2015)
Hasan, M.K., Dahal, L., Samarakoon, P.N., Tushar, F.I., Marly, R.M.: DSNet: Automatic Dermoscopic skin lesion segmentation. Comput. Biol. Med. 120, 103738 (2019)
Kovac, J., Peer, P., Solina, F.: Human skin color clustering for face detection. In: The IEEE Region 8 EUROCON 2003. Computer as a Tool, vol. 2, pp. 144–1482 (2003)
Jones, M.J., Rehg, J.M.: Statistical color models with application to skin detection. Int. J. Comput. Vision 46, 81–96 (1999)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2015)
Liu, Z., et al.: Swin transformer v2: Scaling up capacity and resolution. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11999–12009 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tan, T., Shan, Z. (2023). Multi-task Learning Based Skin Segmentation. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14119. Springer, Cham. https://doi.org/10.1007/978-3-031-40289-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-40289-0_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40288-3
Online ISBN: 978-3-031-40289-0
eBook Packages: Computer ScienceComputer Science (R0)