Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-task Learning Based Skin Segmentation

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14119))

  • 527 Accesses

Abstract

Skin segmentation is a critical task in computer vision that has diverse applications in several fields such as biometrics, medical imaging, and video surveillance. Despite its importance, the acquisition of high-quality data remains a significant challenge in skin segmentation research. In this paper, we propose a novel skin segmentation algorithm for single-person images by utilizing a dual-task neural network built on the multi-task learning framework. Specifically, the algorithm employs an encoder-decoder architecture consisting of a shared backbone, two dynamic encoders, and a decoder. The dynamic encoders use dynamic convolution to extract more spatial location information, while the decoder utilizes a query-based dual-task approach that allows each task to utilize the information generated by the other one efficiently. The experimental results indicate that the proposed skin segmentation algorithm outperforms or matches the current state-of-the-art techniques on the benchmark test set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naji, S., Jalab, H.A., Kareem, S.A.: A survey on skin detection in colored images. Artif. Intell. Rev., 1–47 (2019)

    Google Scholar 

  2. Maidhof, C., Hashemifard, K., Offermann, J., Ziee, M., Flórez-Revuelta, F.: Underneath your clothes: a social and technological perspective on nudity in the context of AAL technology. In: Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments (2022)

    Google Scholar 

  3. Hsieh, I.-S., Fan, K.-C., Lin, C.: A statistic approach to the detection of human faces in color nature scene. Pattern Recognit. 35, 1583–1596 (2002)

    Article  MATH  Google Scholar 

  4. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2014)

    Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  6. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9992–10002 (2021)

    Google Scholar 

  7. He, Y., et al.: Semi- supervised skin detection by network with mutual guidance. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2111–2120 (2019)

    Google Scholar 

  8. Xu, H., Sarkar, A., Abbott, A.L.: Color invariant skin segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2905–2914 (2022)

    Google Scholar 

  9. Tarasiewicz, T., Nalepa, J., Kawulok, M.: Skinny: a lightweight U-Net for skin detection and segmentation. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2386–2390 (2020)

    Google Scholar 

  10. Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: Proceedings of the 29th ACM International Conference on Multimedia (2021)

    Google Scholar 

  11. Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. In: Neural Information Processing Systems (2018)

    Google Scholar 

  12. Vandenhende, S., Georgoulis, S., Van Gool, L.: MTI-Net: multi-scale task interaction networks for multi-task learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 527–543. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_31

    Chapter  Google Scholar 

  13. Yang, B., Bender, G., Le, Q.V., Ngiam, J.: CondConv: conditionally parameterized convolutions for efficient inference. In: Neural Information Processing Systems (2019)

    Google Scholar 

  14. Li, C., Zhou, A., Yao, A.: Omni-dimensional dynamic convolution. arXiv preprint: arXiv:2209.07947 (2022)

  15. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv abs/2010.11929 (2020)

    Google Scholar 

  16. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  17. Gao, P., Zheng, M., Wang, X., Dai, J., Li, H.: Fast convergence of DETR with spatially modulated co-attention. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3601–3610 (2021)

    Google Scholar 

  18. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2015)

    Article  Google Scholar 

  19. Hasan, M.K., Dahal, L., Samarakoon, P.N., Tushar, F.I., Marly, R.M.: DSNet: Automatic Dermoscopic skin lesion segmentation. Comput. Biol. Med. 120, 103738 (2019)

    Article  Google Scholar 

  20. Kovac, J., Peer, P., Solina, F.: Human skin color clustering for face detection. In: The IEEE Region 8 EUROCON 2003. Computer as a Tool, vol. 2, pp. 144–1482 (2003)

    Google Scholar 

  21. Jones, M.J., Rehg, J.M.: Statistical color models with application to skin detection. Int. J. Comput. Vision 46, 81–96 (1999)

    Article  MATH  Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2015)

    Google Scholar 

  23. Liu, Z., et al.: Swin transformer v2: Scaling up capacity and resolution. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11999–12009 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taizhe Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, T., Shan, Z. (2023). Multi-task Learning Based Skin Segmentation. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14119. Springer, Cham. https://doi.org/10.1007/978-3-031-40289-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40289-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40288-3

  • Online ISBN: 978-3-031-40289-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics