Nothing Special   »   [go: up one dir, main page]

Skip to main content

Inhaltsbasiertes System zur Suche und Visualisierung von Musik in ethnomusikologischen Musikarchiven

  • Chapter
  • First Online:
Computergestützte Archivierung von Tonträgern
  • 52 Accesses

Zusammenfassung

In diesem Kapitel schlagen wir ein inhaltsbasiertes Explorations- und Visualisierungssystem für ethnomusikologische Archive vor, das den Datenzugriff nach rhythmischer Ähnlichkeit ermöglicht. Das System extrahiert ein onsets-synchrones Klangfarbenmerkmal jeder Audiodatei einer bestimmten Sammlung. Aus den resultierenden Zeitreihen werden Hidden Markov Modelle trainiert. Die Übergangswahrscheinlichkeitsmatrizen der Modelle werden als rhythmischer Fingerabdruck betrachtet, der die rhythmische Struktur der Musik in Bezug auf die Klangfarbe darstellt. Der Algorithmus der selbstorganisierenden Karte wird verwendet, um die hochdimensionalen Fingerabdrücke auf eine zweidimensionale Karte zu projizieren. Bei dieser Technik bleibt die Topologie des hochdimensionalen Merkmalsraums erhalten, was zu ähnlichen Kartenpositionen für ähnliche Rhythmen führt. Auf diese Weise wird ein Clustering nach rhythmischer Ähnlichkeit erreicht. Das System unterstützt daher musikwissenschaftliche Studien in mehrfacher Hinsicht: Das Rhythmus-Fingerprinting impliziert weder eine bestimmte Musiktheorie noch führt es zu einer kulturellen Voreingenommenheit. Daher können verschiedene Musiken unabhängig von ihrer Herkunft sinnvoll verglichen werden. Die Suche nach Ähnlichkeit ermöglicht einen explorativen Zugang zu den Musiksammlungen, was Forscher bei der Suche nach neuen Hypothesen und der Nutzung von Musikarchiven mit nur wenigen oder gänzlich ohne Metadaten unterstützen kann. Das System wird derzeit im Rahmen des COMSAR-Projekts im Ethnographic Sound Recordings Archive der Universität Hamburg prototypisch erprobt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.ama.ifeas.uni-mainz.de/.

  2. 2.

    http://www.liederenbank.nl/.

  3. 3.

    http://www.telemeta.org.

  4. 4.

    http://crem-cnrs.fr/.

  5. 5.

    http://dml.city.ac.uk/.

  6. 6.

    http://esra.fbkultur.uni-hamburg.de/explore/view?entity_id=216.

  7. 7.

    http://esra.fbkultur.uni-hamburg.de/explore/view?entity_id=219.

  8. 8.

    http://esra.fbkultur.uni-hamburg.de/explore/view?entity_id=75.

  9. 9.

    http://esra.fbkultur.uni-hamburg.de/explore/view?entity_id=261.

Literatur

  1. van Kranenburg P, de Bruin M, Volk A (2019) Documenting a song culture: the Dutch song database as a resource for musicological research. Int J Digit Libr 20:13–23

    Google Scholar 

  2. Fillon T, Simonnot J, Mifune M-F, Khoury S, Pellerin G, Coz ML, de la Bretèque EA, Doukhan D, Fourer D (2014) Telemeta: an open-source web framework for ethnomusicological audio archives management and automatic analysis. In: Proceedings of the 1st international workshop on digital libraries for musicology, New York, S 1–8

    Google Scholar 

  3. Abdallah S, Benetos E, Gold N, Hargreaves S, Weyde T, Wolff D (2017) The digital music lab: a big data infrastructure for digital musicology. ACM J Comput Cult Herit 10(1):1–21

    Article  Google Scholar 

  4. Pfeiffer S, Fischer S, Effelsberg W (1996) Automatic audio content analysis. In: Proceedings of the forth ACM international conference on multimedia, Boston, MA, USA, November 1996

    Google Scholar 

  5. Melucci M, Orio N (1999) Music information retrieval using melodic surface. In: Proceedings of the fourth ACM conference on digital libraries, Berkley, CA, USA, August 1999, S 152–160

    Google Scholar 

  6. Tseng Y-H (1999) Content-based retrieval for music collections. In: Proceedings of the 22nd annual international ACM SIGIR, Berkeley, CA, USA, August 1999, S 176–182

    Google Scholar 

  7. Melucci M, Orio N (2000) Smile: a system for content-based music information retrieval environments. In: RIAO’ 2000 conference proceedings, vol 2, College de France, France, S 1261–1275

    Google Scholar 

  8. Frühwirth M, Rauber A (2001) Self-organizing maps for content-based music clustering. In: Tagliaferri R, Marinaro M (Hrsg) Proceedings of the 12th Italian workshop on neural nets. Perspectives in neural computing, Vietri sul Mare, Salerno, Italy, May 2001

    Google Scholar 

  9. Rauber A, Frühwirth M (2001) Automatically analyzing and organizing music archives. In: Constantopoulos P, Sølvberg IT (Hrsg) Research and advanced technology for digital libraries (Lecture notes in computer science), Darmstadt, September 2001, S 402–414

    Google Scholar 

  10. Pamplak E (2001) Islands of music. PhD dissertation, Institut für Softwaretechnik und Interaktive Systeme der Technischen Universit at Wien, Dezember 2001

    Google Scholar 

  11. Juhász Z (2009) Automatic segmentation and comparative study of motives in eleven folk song collections using self-organizing maps and multidimensional mapping. J New Music Res 38(1):77–85

    Article  Google Scholar 

  12. Juhász Z (2011) Low dimensional visualization of folk music systems using the self organizing cloud. In: Klapuri A, Leider C (Hrsg) Proceedings of the 12th international society for music information retrieval conference, ISMIR 2011, University of Miami, Miami, 24–28 October 2011, S 299–304. http://ismir2011.ismir.net/papers/OS3-2.pdf. Zugegriffen am 01.05.2018

  13. Panteli M, Benetos E, Dixon S (2016) Learning a features space for similarity in world music. In: Proceedings of the 17th international society for music information retrieval conference, New Yorck City, USA

    Google Scholar 

  14. Al Mansouria HZ. Helv el mabassem. http://esra.fbkultur.uni-hamburg.de/explore/view?entity_id=514

  15. Mohamed Eff. el Akkad C. Taxim rast (ala alwahda). http://esra.fbkultur.uni-hamburg.de/explore/view?entity_id=514

  16. Blaß M (2013) Timbre-based rhythm theory using Hidden Markov models. Master’s thesis, University of Hamburg

    Google Scholar 

  17. Blaß M (2013) Timbre-based drum pattern classification using Hidden Markov models. In: Proceedings of the 6th international workshop on machine learning and music, ECML/PKDD, Prague, Czech Republic

    Google Scholar 

  18. Mauch M, Dixon S (2012) A corpus-based study of rhythm patterns. In: Proceedings of the 13th international society for music information retrieval conference (ISMIR), Porto, Portugal

    Google Scholar 

  19. Desain P (1992) A (de)composable theory of rhythm perception. Music Percept 9(4):439–454

    Article  Google Scholar 

  20. Alluri V, Toiviainen P (2009) Exploring perceptual and acoustical correlates of polyphonic timbre. Music Percept Interdiscip J 27(3):223–242

    Article  Google Scholar 

  21. Zucchini W, MacDonald IL (2009) Hidden Markov models for time series. Monographs on statistics and applied probability, Bd 110. Chapman & Hall, Boca Raton

    Book  Google Scholar 

  22. Aucouturier J-J, Sandler M (2001) Segmentation of musical signals using Hidden Markov models. In: Proceedings of the 110th audio engineering society, Amsterdam, The Netherlands, May 2001

    Google Scholar 

  23. Mavromatis P (2012) Exploring the rhythm of the palestrine style: a case study in probabilistic grammar induction. J Music Theory 56(2):169–223

    Article  Google Scholar 

  24. Shao X, Xu C, Kankanhalli M (2004) Unsupervised classification of music genre using hidden Markov model. IEEE Int Conf Multimed Expo 3:2023–2026

    Google Scholar 

  25. Braasch J (2013) The μ cosm project: an introspective platform to study intelligent agents in the context of music ensemble improvisation. In: Bader R (Hrsg) Sound – perception – performance. Current research in systematic musicology, Bd 1. Springer, Heidelberg

    Google Scholar 

  26. Alexandraki C (2014) Real-time machine listening and segmental re-synthesis for networked music performance. PhD dissertation, University of Hamburg

    Google Scholar 

  27. Rabiner LR, Juang BH (1986) An introduction to Hidden Markov models. IEEE ASSP Mag 3(1):4–16

    Article  Google Scholar 

  28. Rabiner LR (1989) A tutorial on Hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286. IEEE

    Article  Google Scholar 

  29. Aucouturier J-J, Pachet F (2002) Music similarity measures: what’s the use? In: Proceedings of the 3rd international society for music information retrieval conference, ISMIR

    Google Scholar 

  30. Aucouturier J-J, Pachet F, Sandler M (2005) The way it sounds: timbre models for analysis and retrieval of music signals. IEEE Trans Multimed 7(6):1028–1035

    Article  Google Scholar 

  31. Davis S, Mermelstein P (1980) Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans Acoust Speech Signal Process 28(4):357–366

    Article  Google Scholar 

  32. Iverson P, Krumhansl CL (1993) Isolating the dynamic attributes of musical timbre. J Acoust Soc Am 94(5):2595–2603

    Article  Google Scholar 

  33. McAdams S, Winsberg S, Donnadieu S, Soete GD, Krimphoff J (1995) Perceptual scaling of sythesized musical timbres: common dimensions, specificities, and latent subject classes. Psychol Rev 58:177–192

    Google Scholar 

  34. Hourdin C, Charbonneau G, Moussa T (1997) A multidimensional scaling analysis of musical instruments’ time-varying spectra. Comput Music J 21(2):44–55

    Article  Google Scholar 

  35. von Bismarck G (1974) Timbre of steady sounds: a factorial investigation of its verbal attributes. Acoustica 3(3):146–159

    Google Scholar 

  36. Zacharakis AI, Pastiadis K, Papadelis G, Reiss JD (2011) An investigation of musical timbre: uncovering salient semantic descriptors and perceptual dimensions. In: Klapuri A, Leider C (Hrsg) Proceedings of the 12th international society for music information retrieval conference, ISMIR 2011, University of Miami, Miami, Florida, USA, 24–28 October 2011, S 807–812. http://ismir2011.ismir.net/papers/OS10-3.pdf

  37. Grey JM (1977) Multidimensional perceptual scalings of musical timbres. J Acoust Soc Am 61(5):1270–1277

    Article  Google Scholar 

  38. Grey JM, Gordon JW (1978) Perceptual effects of spectral modifications on musical timbres. J Acoust Soc Am 63(5):1493–1500

    Article  Google Scholar 

  39. Schubert E, Wolfe J, Tarnopolsky A (2004) Spectral centroid and timbre in complex, multiple instrumental textures. In: Proceedings of the 8th international conference on music perception and cognition, Evanston, Illinois, US, S 654–657

    Google Scholar 

  40. Schubert E, Wolfe J (2006) Does timbral brightness scale with frequency and spectral centroid. Acta Acoust 92(2):820–825

    Google Scholar 

  41. Siedenburg K, Fujinaga I, McAdams S (2016) A comparison of approaches to timbre descriptors in music information retrieval and music psychology. J New Music Res 45(1):27–41

    Article  Google Scholar 

  42. Park Y-S, Chon T-S, Bae M-J, Kim D-H, Lek S (2017) Ecological informatics. In: Multivariate data analysis by means of self-organizing maps. Springer, Cham, S 251–272

    Google Scholar 

  43. Resta M (2014) Financial self-organizing maps. In: Proceedings of the 24th international conference on artificial neural networks, Hamburg, S 781–788

    Google Scholar 

  44. Toiviainen P (2005) Visualization of tonal content with self-organizing maps and self-similarity matrices. ACM Comput Entertain 3(4):1–10

    Article  Google Scholar 

  45. Vembu S, Baumann S (2004) A self-organizing map based knowledge discovery for music recommendation systems. In: Computer music modeling and retrieval: second international symposium (CMMR) (Lecture notes in computer science), vol 3310. Esbjerg, Denmark, May 2004

    Google Scholar 

  46. Ness SR, Tzanetakis G (2009) Somba: multiuser music creation using self-organizing maps and motion tracking. In: Proceedings of the international computer music conference (ICMC), Montreal, Canada

    Google Scholar 

  47. Odowichuk G, Tzanetakis G (2012) Browsing music in and sound using gestures in a self-organized 3d space. In: Proceedings of the international computer music conference (ICMC), Ljubljana, Slovenia

    Google Scholar 

  48. Lötsch J, Ultsch A (2014) Exploiting the structures of the u-matrix. In: Proceedings of the 10th international workshop on self-organizing maps, Mittweida, Germany, S 249–257

    Google Scholar 

  49. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  50. Flexer A (2001) On the use of self-organizing maps for clustering and visualization. Intell Data Anal 1:373–384

    Article  Google Scholar 

  51. Bello JP, Daudet L, Abdallah S, Duxbury C, Davis M, Sandler MB (2005) A tutorial on onset detection in music signals. IEEE Trans Speech Audio Process 13(5):1035–1047

    Article  Google Scholar 

  52. Dixon S (2006) Onset detection revisited. In: Proceedings of the 9th international conference on digital audio effects (DAFx-06), Montreal, Canada, S 18–20

    Google Scholar 

  53. n’Dri L, Aya T, n’Dri Akissi K. Aoussi. http://esra.fbkultur.uni-hamburg.de/explore/view?entity_id=514

  54. Glover J, Lazzarini V, Timoney J (2011) Real-time detection of musical onsets with linear prediction and sinusoidal modelling. J Adv Signal Process 68:297–316

    Google Scholar 

  55. Leveau P, Daudet L, Richard G (2004) Methodology and tools for the evaluation of automatic onset detection algorithms in music. In: Proceedings of the 5th international conference on music information retrieval, Barcelona, Spain

    Google Scholar 

  56. Flexer A, Schnitzer D, Schlüter J (2012) A MIREX meta-analysis of hubness in audio music similarity. In: Proceedings of the international conference on music information retrieval, Porto, Portugal

    Google Scholar 

  57. Flexer A (2015) Improving visualization for high-dimensional music similarity spaces. In: Proceedings of the 16th international conference for music information retrieval, Málaga, Spain

    Google Scholar 

  58. Le T, Cuturi M (2015) Unsupervised Riemannian metric learning for histograms using Aitchison transformations. In: Proceedings of the 32nd international conference on machine learning, vol 37, Lille, France

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Blaß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blaß, M., Bader, R. (2024). Inhaltsbasiertes System zur Suche und Visualisierung von Musik in ethnomusikologischen Musikarchiven. In: Bader, R. (eds) Computergestützte Archivierung von Tonträgern. Springer Vieweg, Cham. https://doi.org/10.1007/978-3-031-49640-0_7

Download citation

Publish with us

Policies and ethics