Zusammenfassung
In diesem Kapitel schlagen wir ein inhaltsbasiertes Explorations- und Visualisierungssystem für ethnomusikologische Archive vor, das den Datenzugriff nach rhythmischer Ähnlichkeit ermöglicht. Das System extrahiert ein onsets-synchrones Klangfarbenmerkmal jeder Audiodatei einer bestimmten Sammlung. Aus den resultierenden Zeitreihen werden Hidden Markov Modelle trainiert. Die Übergangswahrscheinlichkeitsmatrizen der Modelle werden als rhythmischer Fingerabdruck betrachtet, der die rhythmische Struktur der Musik in Bezug auf die Klangfarbe darstellt. Der Algorithmus der selbstorganisierenden Karte wird verwendet, um die hochdimensionalen Fingerabdrücke auf eine zweidimensionale Karte zu projizieren. Bei dieser Technik bleibt die Topologie des hochdimensionalen Merkmalsraums erhalten, was zu ähnlichen Kartenpositionen für ähnliche Rhythmen führt. Auf diese Weise wird ein Clustering nach rhythmischer Ähnlichkeit erreicht. Das System unterstützt daher musikwissenschaftliche Studien in mehrfacher Hinsicht: Das Rhythmus-Fingerprinting impliziert weder eine bestimmte Musiktheorie noch führt es zu einer kulturellen Voreingenommenheit. Daher können verschiedene Musiken unabhängig von ihrer Herkunft sinnvoll verglichen werden. Die Suche nach Ähnlichkeit ermöglicht einen explorativen Zugang zu den Musiksammlungen, was Forscher bei der Suche nach neuen Hypothesen und der Nutzung von Musikarchiven mit nur wenigen oder gänzlich ohne Metadaten unterstützen kann. Das System wird derzeit im Rahmen des COMSAR-Projekts im Ethnographic Sound Recordings Archive der Universität Hamburg prototypisch erprobt.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
Literatur
van Kranenburg P, de Bruin M, Volk A (2019) Documenting a song culture: the Dutch song database as a resource for musicological research. Int J Digit Libr 20:13–23
Fillon T, Simonnot J, Mifune M-F, Khoury S, Pellerin G, Coz ML, de la Bretèque EA, Doukhan D, Fourer D (2014) Telemeta: an open-source web framework for ethnomusicological audio archives management and automatic analysis. In: Proceedings of the 1st international workshop on digital libraries for musicology, New York, S 1–8
Abdallah S, Benetos E, Gold N, Hargreaves S, Weyde T, Wolff D (2017) The digital music lab: a big data infrastructure for digital musicology. ACM J Comput Cult Herit 10(1):1–21
Pfeiffer S, Fischer S, Effelsberg W (1996) Automatic audio content analysis. In: Proceedings of the forth ACM international conference on multimedia, Boston, MA, USA, November 1996
Melucci M, Orio N (1999) Music information retrieval using melodic surface. In: Proceedings of the fourth ACM conference on digital libraries, Berkley, CA, USA, August 1999, S 152–160
Tseng Y-H (1999) Content-based retrieval for music collections. In: Proceedings of the 22nd annual international ACM SIGIR, Berkeley, CA, USA, August 1999, S 176–182
Melucci M, Orio N (2000) Smile: a system for content-based music information retrieval environments. In: RIAO’ 2000 conference proceedings, vol 2, College de France, France, S 1261–1275
Frühwirth M, Rauber A (2001) Self-organizing maps for content-based music clustering. In: Tagliaferri R, Marinaro M (Hrsg) Proceedings of the 12th Italian workshop on neural nets. Perspectives in neural computing, Vietri sul Mare, Salerno, Italy, May 2001
Rauber A, Frühwirth M (2001) Automatically analyzing and organizing music archives. In: Constantopoulos P, Sølvberg IT (Hrsg) Research and advanced technology for digital libraries (Lecture notes in computer science), Darmstadt, September 2001, S 402–414
Pamplak E (2001) Islands of music. PhD dissertation, Institut für Softwaretechnik und Interaktive Systeme der Technischen Universit at Wien, Dezember 2001
Juhász Z (2009) Automatic segmentation and comparative study of motives in eleven folk song collections using self-organizing maps and multidimensional mapping. J New Music Res 38(1):77–85
Juhász Z (2011) Low dimensional visualization of folk music systems using the self organizing cloud. In: Klapuri A, Leider C (Hrsg) Proceedings of the 12th international society for music information retrieval conference, ISMIR 2011, University of Miami, Miami, 24–28 October 2011, S 299–304. http://ismir2011.ismir.net/papers/OS3-2.pdf. Zugegriffen am 01.05.2018
Panteli M, Benetos E, Dixon S (2016) Learning a features space for similarity in world music. In: Proceedings of the 17th international society for music information retrieval conference, New Yorck City, USA
Al Mansouria HZ. Helv el mabassem. http://esra.fbkultur.uni-hamburg.de/explore/view?entity_id=514
Mohamed Eff. el Akkad C. Taxim rast (ala alwahda). http://esra.fbkultur.uni-hamburg.de/explore/view?entity_id=514
Blaß M (2013) Timbre-based rhythm theory using Hidden Markov models. Master’s thesis, University of Hamburg
Blaß M (2013) Timbre-based drum pattern classification using Hidden Markov models. In: Proceedings of the 6th international workshop on machine learning and music, ECML/PKDD, Prague, Czech Republic
Mauch M, Dixon S (2012) A corpus-based study of rhythm patterns. In: Proceedings of the 13th international society for music information retrieval conference (ISMIR), Porto, Portugal
Desain P (1992) A (de)composable theory of rhythm perception. Music Percept 9(4):439–454
Alluri V, Toiviainen P (2009) Exploring perceptual and acoustical correlates of polyphonic timbre. Music Percept Interdiscip J 27(3):223–242
Zucchini W, MacDonald IL (2009) Hidden Markov models for time series. Monographs on statistics and applied probability, Bd 110. Chapman & Hall, Boca Raton
Aucouturier J-J, Sandler M (2001) Segmentation of musical signals using Hidden Markov models. In: Proceedings of the 110th audio engineering society, Amsterdam, The Netherlands, May 2001
Mavromatis P (2012) Exploring the rhythm of the palestrine style: a case study in probabilistic grammar induction. J Music Theory 56(2):169–223
Shao X, Xu C, Kankanhalli M (2004) Unsupervised classification of music genre using hidden Markov model. IEEE Int Conf Multimed Expo 3:2023–2026
Braasch J (2013) The μ cosm project: an introspective platform to study intelligent agents in the context of music ensemble improvisation. In: Bader R (Hrsg) Sound – perception – performance. Current research in systematic musicology, Bd 1. Springer, Heidelberg
Alexandraki C (2014) Real-time machine listening and segmental re-synthesis for networked music performance. PhD dissertation, University of Hamburg
Rabiner LR, Juang BH (1986) An introduction to Hidden Markov models. IEEE ASSP Mag 3(1):4–16
Rabiner LR (1989) A tutorial on Hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286. IEEE
Aucouturier J-J, Pachet F (2002) Music similarity measures: what’s the use? In: Proceedings of the 3rd international society for music information retrieval conference, ISMIR
Aucouturier J-J, Pachet F, Sandler M (2005) The way it sounds: timbre models for analysis and retrieval of music signals. IEEE Trans Multimed 7(6):1028–1035
Davis S, Mermelstein P (1980) Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans Acoust Speech Signal Process 28(4):357–366
Iverson P, Krumhansl CL (1993) Isolating the dynamic attributes of musical timbre. J Acoust Soc Am 94(5):2595–2603
McAdams S, Winsberg S, Donnadieu S, Soete GD, Krimphoff J (1995) Perceptual scaling of sythesized musical timbres: common dimensions, specificities, and latent subject classes. Psychol Rev 58:177–192
Hourdin C, Charbonneau G, Moussa T (1997) A multidimensional scaling analysis of musical instruments’ time-varying spectra. Comput Music J 21(2):44–55
von Bismarck G (1974) Timbre of steady sounds: a factorial investigation of its verbal attributes. Acoustica 3(3):146–159
Zacharakis AI, Pastiadis K, Papadelis G, Reiss JD (2011) An investigation of musical timbre: uncovering salient semantic descriptors and perceptual dimensions. In: Klapuri A, Leider C (Hrsg) Proceedings of the 12th international society for music information retrieval conference, ISMIR 2011, University of Miami, Miami, Florida, USA, 24–28 October 2011, S 807–812. http://ismir2011.ismir.net/papers/OS10-3.pdf
Grey JM (1977) Multidimensional perceptual scalings of musical timbres. J Acoust Soc Am 61(5):1270–1277
Grey JM, Gordon JW (1978) Perceptual effects of spectral modifications on musical timbres. J Acoust Soc Am 63(5):1493–1500
Schubert E, Wolfe J, Tarnopolsky A (2004) Spectral centroid and timbre in complex, multiple instrumental textures. In: Proceedings of the 8th international conference on music perception and cognition, Evanston, Illinois, US, S 654–657
Schubert E, Wolfe J (2006) Does timbral brightness scale with frequency and spectral centroid. Acta Acoust 92(2):820–825
Siedenburg K, Fujinaga I, McAdams S (2016) A comparison of approaches to timbre descriptors in music information retrieval and music psychology. J New Music Res 45(1):27–41
Park Y-S, Chon T-S, Bae M-J, Kim D-H, Lek S (2017) Ecological informatics. In: Multivariate data analysis by means of self-organizing maps. Springer, Cham, S 251–272
Resta M (2014) Financial self-organizing maps. In: Proceedings of the 24th international conference on artificial neural networks, Hamburg, S 781–788
Toiviainen P (2005) Visualization of tonal content with self-organizing maps and self-similarity matrices. ACM Comput Entertain 3(4):1–10
Vembu S, Baumann S (2004) A self-organizing map based knowledge discovery for music recommendation systems. In: Computer music modeling and retrieval: second international symposium (CMMR) (Lecture notes in computer science), vol 3310. Esbjerg, Denmark, May 2004
Ness SR, Tzanetakis G (2009) Somba: multiuser music creation using self-organizing maps and motion tracking. In: Proceedings of the international computer music conference (ICMC), Montreal, Canada
Odowichuk G, Tzanetakis G (2012) Browsing music in and sound using gestures in a self-organized 3d space. In: Proceedings of the international computer music conference (ICMC), Ljubljana, Slovenia
Lötsch J, Ultsch A (2014) Exploiting the structures of the u-matrix. In: Proceedings of the 10th international workshop on self-organizing maps, Mittweida, Germany, S 249–257
van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605
Flexer A (2001) On the use of self-organizing maps for clustering and visualization. Intell Data Anal 1:373–384
Bello JP, Daudet L, Abdallah S, Duxbury C, Davis M, Sandler MB (2005) A tutorial on onset detection in music signals. IEEE Trans Speech Audio Process 13(5):1035–1047
Dixon S (2006) Onset detection revisited. In: Proceedings of the 9th international conference on digital audio effects (DAFx-06), Montreal, Canada, S 18–20
n’Dri L, Aya T, n’Dri Akissi K. Aoussi. http://esra.fbkultur.uni-hamburg.de/explore/view?entity_id=514
Glover J, Lazzarini V, Timoney J (2011) Real-time detection of musical onsets with linear prediction and sinusoidal modelling. J Adv Signal Process 68:297–316
Leveau P, Daudet L, Richard G (2004) Methodology and tools for the evaluation of automatic onset detection algorithms in music. In: Proceedings of the 5th international conference on music information retrieval, Barcelona, Spain
Flexer A, Schnitzer D, Schlüter J (2012) A MIREX meta-analysis of hubness in audio music similarity. In: Proceedings of the international conference on music information retrieval, Porto, Portugal
Flexer A (2015) Improving visualization for high-dimensional music similarity spaces. In: Proceedings of the 16th international conference for music information retrieval, Málaga, Spain
Le T, Cuturi M (2015) Unsupervised Riemannian metric learning for histograms using Aitchison transformations. In: Proceedings of the 32nd international conference on machine learning, vol 37, Lille, France
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG
About this chapter
Cite this chapter
Blaß, M., Bader, R. (2024). Inhaltsbasiertes System zur Suche und Visualisierung von Musik in ethnomusikologischen Musikarchiven. In: Bader, R. (eds) Computergestützte Archivierung von Tonträgern. Springer Vieweg, Cham. https://doi.org/10.1007/978-3-031-49640-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-49640-0_7
Published:
Publisher Name: Springer Vieweg, Cham
Print ISBN: 978-3-031-49639-4
Online ISBN: 978-3-031-49640-0
eBook Packages: Computer Science and Engineering (German Language)