Nothing Special   »   [go: up one dir, main page]

Skip to main content

Guarding Precise and Imprecise Polyhedral Terrains with Segments

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2023)

Abstract

Guarding polyhedral terrains is a fundamental problem with realistic applications. In this paper we study three such problems when the terrains are precise and imprecise respectively. The first problem we consider is to place a segment pq with a fixed length over a precise input terrain T with n vertices in 2D (resp. 3D), such that pq can see every point on T and the maximum y-coordinate (resp. z-coordinate) of p and q is minimized. For terrains in 2D and 3D we present algorithms running in O(n) and \(O(n^3\log n)\) time respectively. The second problem is to place two horizontal segments \(p_1q_1\) and \(p_2q_2\) of a fixed length and with the minimum y-coordinate to cover a 2D terrain (x-monotone chain), which we solve in \(O(n^2\log n)\) time.

Given a polyhedral terrain T of n vertices in 3D, a shortest watchtower is a vertical segment erected on T such that every point on T is visible from the top of the segment and the length of the segment is minimized. The problem was solved in \(O(n\log n)\) time more than 30 years ago. In this paper, we investigate the problem under the imprecise model where each vertex of T is on a given vertical interval. We show that when the location of a watchtower is fixed, the problem in 2D and 3D can be solved with linear programming, which leads to an additive \(\varepsilon \)-approximation for the general problem. We implement this algorithm using CPLEX which demonstrate the efficiency and accuracy of the algorithm when \(n\le 100\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, P.K., et al.: Guarding a terrain by two watchtowers. Algorithmica 58(2), 352–390 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bespamyatnikh, S., Chen, Z., Wang, K., Zhu, B.: On the planar two-watchtower problem. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 121–130. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44679-6_14

    Chapter  Google Scholar 

  3. Bhattacharya, B.K., Czyzowicz, J., Egyed, P., Toussaint, G.T., Stojmenovic, I., Urrutia, J.: Computing shortest transversals of sets. Int. J. Comput. Geom. Appl. 2(4), 417–442 (1992)

    Article  MathSciNet  Google Scholar 

  4. Bose, P., Shermer, T.C., Toussaint, G.T., Zhu, B.: Guarding polyhedral terrains. Comput. Geom. Theo. Appl. 7, 173–185 (1997)

    Article  MathSciNet  Google Scholar 

  5. Cole, R., Sharir, M.: Visibility problems for polyhedral terrains. J. Symb. Comput. 7(1), 11–30 (1989)

    Article  MathSciNet  Google Scholar 

  6. Driemel, A., Haverkort, H.J., Löffler, M., Silveira, R.I.: Flow computations on imprecise terrains. J. Comput. Geom. 4(1), 38–78 (2013)

    MathSciNet  Google Scholar 

  7. Duraisamy, N., et al.: Half-guarding weakly-visible polygons and terrains. In: Dawar, A., Guruswami, V., editors, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’2022), December 18–20, 2022, IIT Madras, Chennai, India, volume 250 of LIPIcs, pp. 18:1–18:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  8. Gray, C., Evans, W.S.: Optimistic shortest paths on uncertain terrains. In: Proceedings of the 16th Canadian Conference on Computational Geometry (CCCG’2004), Concordia University, Montréal, Québec, Canada, August 9–11, 2004, pp. 68–71 (2004)

    Google Scholar 

  9. Gray, C., Kammer, F., Löffler, M., Silveira, R.I.: Removing local extrema from imprecise terrains. Comput. Geom. Theo. Appl. 45(7), 334–349 (2012)

    Article  MathSciNet  Google Scholar 

  10. Gray, C., Löffler, M., Silveira, R.I.: Smoothing imprecise 1.5d terrains. Int. J. Comput. Geom. Appl. 20(4), 381–414 (2010)

    Google Scholar 

  11. Katoh, N., Wang, W., Yinfeng, X., Zhu, B.: Parametric search: three new applications. Front. Math. China 5(2), 65–73 (2010)

    Article  MathSciNet  Google Scholar 

  12. Lee, D.T., Preparata, F.P.: An optimal algorithm for finding the kernel of a polygon. J. ACM 26(3), 415–421 (1979)

    Google Scholar 

  13. Lubiw, A., Stroud, G.: Computing realistic terrains from imprecise elevations. In: Y. Bahoo., Georgiou, K., editors, Proceedings of the 34th Canadian Conference on Computational Geometry, (CCCG’2022), Toronto Metropolitan University, Toronto, Ontario, Canada, August 25–27, 2022, pp. 227–234 (2022)

    Google Scholar 

  14. Preparata, F.P., Muller, D.E.: Finding the intersection of n half-spaces in time O(n log n). Theor. Comput. Sci. 8, 45–55 (1979)

    Article  MathSciNet  Google Scholar 

  15. Seth, R., Maheshwari, A., Nandy, S.C.: Acrophobic guard watchtower problem. Comput. Geom. Theo. Appl. 109, 101918 (2023)

    Article  MathSciNet  Google Scholar 

  16. Sharir, M.: The shortest watchtower and related problems for polyhedral terrains. Inf. Process. Lett. 29(5), 265–270 (1988)

    Article  MathSciNet  Google Scholar 

  17. Tripathi, N., Pal, M., De, M., Das, G., Nandy, S.C.: Guarding polyhedral terrain by k-watchtowers. In: Chen, J., Lu, P. (eds.) FAW 2018. LNCS, vol. 10823, pp. 112–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78455-7_9

    Chapter  Google Scholar 

  18. Vaidya, P.M.: Speeding-up linear programming using fast matrix multiplication (extended abstract). In: 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pp. 332–337. IEEE Computer Society (1989)

    Google Scholar 

  19. Wang, C., Zhu, B.: Three dimensional weak visibility: complexity and algorithms. Theor. Comput. Sci. 234(1–2), 219–232 (2000)

    Article  Google Scholar 

  20. Zhu, B.: Improved algorithms for computing the shortest watchtower of polyhedral terrains. In: Proceedings of the 3rd Canadian Conference on Computational Geometry (CCCG’1992), St. John’s, Newfoundland, Canada, August 1992, pp. 286–291. Memorial University of Newfoundland (1992)

    Google Scholar 

  21. Zhu, B.: Computing the shortest watchtower of a polyhedral terrain in O(n log n) time. Comput. Geom. Theo. Appl. 8, 181–193 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by NSF under grant CNS-2243010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binhai Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McCoy, B., Zhu, B., Dutt, A. (2024). Guarding Precise and Imprecise Polyhedral Terrains with Segments. In: Wu, W., Guo, J. (eds) Combinatorial Optimization and Applications. COCOA 2023. Lecture Notes in Computer Science, vol 14462. Springer, Cham. https://doi.org/10.1007/978-3-031-49614-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49614-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49613-4

  • Online ISBN: 978-3-031-49614-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics