Abstract
Harmonic modeling involves transforming a periodic system into an equivalent time-invariant model of infinite dimension. The states of this model, also referred to as phasors, are represented by coefficients obtained through a sliding Fourier decomposition process. This chapter aims to present a unified and coherent mathematical framework for harmonic modeling and control. By adopting this framework, the analysis and design processes become significantly simplified, as all the methods established for time-invariant systems can be directly applied. Within this framework, we explore the application of these methods to tackle the task of designing control laws based on harmonic pole placement for Linear Time-Periodic (LTP) systems. Additionally, we delve into the computational aspects associated with these control designs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Almer, S., Jonsson, U.: Dynamic phasor analysis of periodic systems. IEEE Trans. Autom. Control 54(8), 2007–2012 (2009)
Almér, S., Mariéthoz, S., Morari, M.: Dynamic phasor model predictive control of switched mode power converters. IEEE Trans. Control Syst. Technol. 23(1), 349–356 (2014)
Bhatia, R., Rosenthal, P.: How and why to solve the operator equation ax- xb= y. Bull. Lond. Math. Soc. 29(1), 1–21 (1997)
Blin, N., Riedinger, P., Daafouz, J., Grimaud, L., Feyel, P.: Necessary and sufficient conditions for harmonic control in continuous time. IEEE Trans. Autom. Control 67(8), 4013–4028 (2021)
Bolzern, P., Colaneri, P.: The periodic Lyapunov equation. SIAM J. Matrix Anal. Appl. 9(4), 499–512 (1988)
Chavez, J.J., Ramirez, A.: Dynamic harmonic domain modeling of transients in three-phase transmission lines. IEEE Trans. Power Deliv. 23(4), 2294–2301 (2008)
Demiray, T.: Simulation of power system dynamics using dynamic phasor models. Ph.D. thesis, ETH Zurich (2008)
Farkas, M.: Periodic Motions, vol. 104. Springer Science & Business Media (2013)
Floquet, G.: Sur les équations linéaires a coefficients périodiques. Ann. Sci. Ecole Norm. Sup. 12, 47–88 (1883)
Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of Linear Operators, vol. 63. Birkhäuser (2013)
Mattavelli, P., Verghese, G.C., Stankovic, A.M.: Phasor dynamics of thyristor-controlled series capacitor systems. IEEE Trans. Power Syst. 12(3), 1259–1267 (1997)
Montagnier, P., Spiteri, R.J., Angeles, J.: The control of linear time-periodic systems using Floquet-Lyapunov theory. Int. J. Control 77(5), 472–490 (2004)
Rabah, R., Sklyar, G., Barkhayev, P.: Exact null controllability, complete stabilizability and continuous final observability of neutral type systems. Int. J. Appl. Math. Comput. Sci. 27(3), 489–499 (2017)
Riedinger, P., Daafouz, J.: Solving infinite-dimensional harmonic Lyapunov and Riccati equations. IEEE Trans. Autom. Control (2022)
Rodman, L.: On exact controllability of operators. Rocky Mt. J. Math. 20(2), 549–560 (1990)
Sanders, S.R., Noworolski, J.M., Liu, X.Z., Verghese, G.C.: Generalized averaging method for power conversion circuits. IEEE Trans. Power Electron. 6(2), 251–259 (1991)
Sinha, S.C., Pandiyan, R., Bibb, J.S.: Liapunov-Floquet transformation: computation and applications to periodic systems. J. Vib. Acoust. 209–219 (1996)
Varga, A.: Robust pole assignment via Sylvester equation based state feedback parametrization. In: IEEE International Symposium on Computer-Aided Control System Design, pp. 13–18. IEEE (2000)
Wereley, N.M.: Analysis and control of linear periodically time varying systems. Ph.D. thesis, Massachusetts Institute of Technology (1990)
Zbigniew, E.: Infinite-dimensional Sylvester equations: basic theory and application to observer design. Int. J. Appl. Math. Comput. Sci. 22(78), 245–257 (2012)
Zhou, B., Duan, G.-R.: Periodic Lyapunov equation based approaches to the stabilization of continuous-time periodic linear systems. IEEE Trans. Autom. Control 57(8), 2139–2146 (2011)
Zhou, J.: Harmonic Lyapunov equations in continuous-time periodic systems: solutions and properties. IET Control Theory Appl. 1(4), 946–954 (2007)
Zhou, J., Hagiwara, T., Araki, M.: Spectral characteristics and eigenvalues computation of the harmonic state operators in continuous-time periodic systems. Syst. Control Lett. 53(2), 141–155 (2004)
Zhou, Jun: Derivation and solution of harmonic Riccati equations via contraction mapping theorem. Trans. Soc. Instrum. Control Eng. 44(2), 156–163 (2008)
Acknowledgements
This work was supported by the “Agence Nationale de la Recherche” (ANR) under Grant HANDY ANR-18-CE40-0010.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
We provide here some results concerning operator norms used in this chapter. The missing proofs can be found in [10] (Part V, pp. 562–574).
The norm of an operator M from \(\ell ^p\) to \(\ell ^q\) is given by
This operator norm is sub-multiplicative, i.e., if \(M: \ell ^p \rightarrow \ell ^q\) and \(N: \ell ^q \rightarrow \ell ^r\) then \(\Vert NM\Vert _{\ell ^p,\ell ^r} \le \Vert M\Vert _{\ell ^p,\ell ^q} \Vert N\Vert _{\ell ^q,\ell ^r}\). If \(p=q\), we use the notation: \(\Vert M\Vert _{\ell ^p}:=\Vert M\Vert _{\ell ^p,\ell ^p}\).
Definition 13.6.1
Consider a vector \(x(t)\in L^2([0 \ T],\mathbb {C}^n)\) and define \(X:=\mathcal {F}(x)\) with its symbol X(z). The \(\ell ^2 -\)norm of X(z) is given by
where \(\Vert X\Vert _{\ell ^2}:=\left( \sum _{k\in \mathbb {Z}}|X_k|^2\right) ^{\frac{1}{2}}\).
Theorem 13.6.2
Let \(A\in L^2([0 \ T],\mathbb {C}^{n\times m})\). Then, \(\mathcal {A}:=\mathcal {T}(A)\) is a bounded operator on \(\ell ^2\) if and only if \(A\in L^{\infty }([0\ T],\mathbb {C}^{n\times m} )\). Moreover, we have
-
1.
the operator norm induced by the \(\ell ^2\)-norm satisfies
$$\begin{aligned}\Vert A(z)\Vert _{\ell ^2}=\Vert \mathcal {A}\Vert _{\ell ^2}=\Vert A\Vert _{L^{\infty }}\end{aligned}$$ -
2.
the operator norm of the semi-infinite Toeplitz matrix satisfies: \(\Vert \mathcal {T}_s(A)\Vert _{\ell ^2}=\Vert \mathcal {A}\Vert _{\ell ^2}\)
-
3.
the operator norm of the Hankel operators \(\mathcal {H}(A^+)\), \(\mathcal {H}(A^-)\) satisfies \(\Vert \mathcal {H}(A^-)\Vert _{\ell ^2}\le \Vert A\Vert _{L^{\infty }}\) and \(\Vert \mathcal {H}(A^+)\Vert _{\ell ^2}\le \Vert A\Vert _{L^{\infty }}\)
-
4.
the operator norm related to the left and right \(m-\)truncations satisfies: \(\Vert \mathcal {A}_{m^+}\Vert _{\ell ^2}=\Vert \mathcal {A}_{m^-}\Vert _{\ell ^2}=\Vert \mathcal {A}\Vert _{\ell ^2}=\Vert A\Vert _{L^\infty }\).
Proposition 13.6.3
Let \(P(\cdot )\) be a matrix function in \( L^\infty ([0 \ T],\mathbb {C}^{n\times n})\). Define \(\textbf{P}:=\mathcal {F}(P)\) and \(\mathcal {P}:=\mathcal {T}(P)\). If \(\Vert \textrm{col}(\textbf{P})\Vert _{\ell ^2}\le \epsilon \) then \(\Vert \mathcal {P}\Vert _{\ell ^2}\le \epsilon \).
Proof
Using Riesz–Fischer theorem, we have
where \(\Vert P(t)\Vert _F\) stands for the Frobenius norm. As \(P \in L^\infty ([0 \ T],\mathbb {C}^{n\times n})\), H\(\ddot{\text{ o }}\)lder’s inequality implies \(Px\in L^2([0 \ T],\mathbb {C}^{n})\) for any \(x\in L^2([0 \ T],\mathbb {C}^{n})\). Thus, the result follows from the following relations between operator norms:
where \(<\cdot ,\cdot >\) stands for the scalar product. \(\square \)
Theorem 13.6.4
Let \(A(t)\in L^\infty ([0 \ T],\mathbb {C}^{n\times n})\). \(\mathcal {A}\) is invertible if and only if there exists \(\gamma >0\) such that the set \(\{t: |\det (A(t))|<\gamma \}\) has measure zero. The inverse \(\mathcal {A}^{-1}\) is determined by \(\mathcal {T}(A^{-1})\). In addition, \(\mathcal {A}\) is invertible if and only if \(\mathcal {A}\) is a Fredholm operator [10], or equivalently in this setting if and only if there exists \(c > 0\) such that
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Vernerey, F., Riedinger, P., Daafouz, J. (2024). Harmonic Modeling and Control. In: Postoyan, R., Frasca, P., Panteley, E., Zaccarian, L. (eds) Hybrid and Networked Dynamical Systems. Lecture Notes in Control and Information Sciences, vol 493. Springer, Cham. https://doi.org/10.1007/978-3-031-49555-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-49555-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49554-0
Online ISBN: 978-3-031-49555-7
eBook Packages: EngineeringEngineering (R0)