Nothing Special   »   [go: up one dir, main page]

Skip to main content

Harmonic Modeling and Control

  • Chapter
  • First Online:
Hybrid and Networked Dynamical Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 493))

  • 352 Accesses

Abstract

Harmonic modeling involves transforming a periodic system into an equivalent time-invariant model of infinite dimension. The states of this model, also referred to as phasors, are represented by coefficients obtained through a sliding Fourier decomposition process. This chapter aims to present a unified and coherent mathematical framework for harmonic modeling and control. By adopting this framework, the analysis and design processes become significantly simplified, as all the methods established for time-invariant systems can be directly applied. Within this framework, we explore the application of these methods to tackle the task of designing control laws based on harmonic pole placement for Linear Time-Periodic (LTP) systems. Additionally, we delve into the computational aspects associated with these control designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almer, S., Jonsson, U.: Dynamic phasor analysis of periodic systems. IEEE Trans. Autom. Control 54(8), 2007–2012 (2009)

    Article  MathSciNet  Google Scholar 

  2. Almér, S., Mariéthoz, S., Morari, M.: Dynamic phasor model predictive control of switched mode power converters. IEEE Trans. Control Syst. Technol. 23(1), 349–356 (2014)

    Article  Google Scholar 

  3. Bhatia, R., Rosenthal, P.: How and why to solve the operator equation ax- xb= y. Bull. Lond. Math. Soc. 29(1), 1–21 (1997)

    Article  MathSciNet  Google Scholar 

  4. Blin, N., Riedinger, P., Daafouz, J., Grimaud, L., Feyel, P.: Necessary and sufficient conditions for harmonic control in continuous time. IEEE Trans. Autom. Control 67(8), 4013–4028 (2021)

    Article  MathSciNet  Google Scholar 

  5. Bolzern, P., Colaneri, P.: The periodic Lyapunov equation. SIAM J. Matrix Anal. Appl. 9(4), 499–512 (1988)

    Article  MathSciNet  Google Scholar 

  6. Chavez, J.J., Ramirez, A.: Dynamic harmonic domain modeling of transients in three-phase transmission lines. IEEE Trans. Power Deliv. 23(4), 2294–2301 (2008)

    Article  Google Scholar 

  7. Demiray, T.: Simulation of power system dynamics using dynamic phasor models. Ph.D. thesis, ETH Zurich (2008)

    Google Scholar 

  8. Farkas, M.: Periodic Motions, vol. 104. Springer Science & Business Media (2013)

    Google Scholar 

  9. Floquet, G.: Sur les équations linéaires a coefficients périodiques. Ann. Sci. Ecole Norm. Sup. 12, 47–88 (1883)

    Article  MathSciNet  Google Scholar 

  10. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of Linear Operators, vol.  63. Birkhäuser (2013)

    Google Scholar 

  11. Mattavelli, P., Verghese, G.C., Stankovic, A.M.: Phasor dynamics of thyristor-controlled series capacitor systems. IEEE Trans. Power Syst. 12(3), 1259–1267 (1997)

    Article  Google Scholar 

  12. Montagnier, P., Spiteri, R.J., Angeles, J.: The control of linear time-periodic systems using Floquet-Lyapunov theory. Int. J. Control 77(5), 472–490 (2004)

    Article  MathSciNet  Google Scholar 

  13. Rabah, R., Sklyar, G., Barkhayev, P.: Exact null controllability, complete stabilizability and continuous final observability of neutral type systems. Int. J. Appl. Math. Comput. Sci. 27(3), 489–499 (2017)

    Article  MathSciNet  Google Scholar 

  14. Riedinger, P., Daafouz, J.: Solving infinite-dimensional harmonic Lyapunov and Riccati equations. IEEE Trans. Autom. Control (2022)

    Google Scholar 

  15. Rodman, L.: On exact controllability of operators. Rocky Mt. J. Math. 20(2), 549–560 (1990)

    Article  MathSciNet  Google Scholar 

  16. Sanders, S.R., Noworolski, J.M., Liu, X.Z., Verghese, G.C.: Generalized averaging method for power conversion circuits. IEEE Trans. Power Electron. 6(2), 251–259 (1991)

    Article  Google Scholar 

  17. Sinha, S.C., Pandiyan, R., Bibb, J.S.: Liapunov-Floquet transformation: computation and applications to periodic systems. J. Vib. Acoust. 209–219 (1996)

    Google Scholar 

  18. Varga, A.: Robust pole assignment via Sylvester equation based state feedback parametrization. In: IEEE International Symposium on Computer-Aided Control System Design, pp. 13–18. IEEE (2000)

    Google Scholar 

  19. Wereley, N.M.: Analysis and control of linear periodically time varying systems. Ph.D. thesis, Massachusetts Institute of Technology (1990)

    Google Scholar 

  20. Zbigniew, E.: Infinite-dimensional Sylvester equations: basic theory and application to observer design. Int. J. Appl. Math. Comput. Sci. 22(78), 245–257 (2012)

    MathSciNet  Google Scholar 

  21. Zhou, B., Duan, G.-R.: Periodic Lyapunov equation based approaches to the stabilization of continuous-time periodic linear systems. IEEE Trans. Autom. Control 57(8), 2139–2146 (2011)

    Article  MathSciNet  Google Scholar 

  22. Zhou, J.: Harmonic Lyapunov equations in continuous-time periodic systems: solutions and properties. IET Control Theory Appl. 1(4), 946–954 (2007)

    Article  MathSciNet  Google Scholar 

  23. Zhou, J., Hagiwara, T., Araki, M.: Spectral characteristics and eigenvalues computation of the harmonic state operators in continuous-time periodic systems. Syst. Control Lett. 53(2), 141–155 (2004)

    Article  MathSciNet  Google Scholar 

  24. Zhou, Jun: Derivation and solution of harmonic Riccati equations via contraction mapping theorem. Trans. Soc. Instrum. Control Eng. 44(2), 156–163 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Agence Nationale de la Recherche” (ANR) under Grant HANDY ANR-18-CE40-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flora Vernerey .

Editor information

Editors and Affiliations

Appendix

Appendix

We provide here some results concerning operator norms used in this chapter. The missing proofs can be found in [10] (Part V, pp. 562–574).

The norm of an operator M from \(\ell ^p\) to \(\ell ^q\) is given by

$$\begin{aligned}\Vert M\Vert _{\ell ^p,\ell ^q}:=\sup _{\Vert X\Vert _{\ell ^p}=1}\Vert MX \Vert _{\ell ^q}.\end{aligned}$$

This operator norm is sub-multiplicative, i.e., if \(M: \ell ^p \rightarrow \ell ^q\) and \(N: \ell ^q \rightarrow \ell ^r\) then \(\Vert NM\Vert _{\ell ^p,\ell ^r} \le \Vert M\Vert _{\ell ^p,\ell ^q} \Vert N\Vert _{\ell ^q,\ell ^r}\). If \(p=q\), we use the notation: \(\Vert M\Vert _{\ell ^p}:=\Vert M\Vert _{\ell ^p,\ell ^p}\).

Definition 13.6.1

Consider a vector \(x(t)\in L^2([0 \ T],\mathbb {C}^n)\) and define \(X:=\mathcal {F}(x)\) with its symbol X(z). The \(\ell ^2 -\)norm of X(z) is given by

$$\begin{aligned}\Vert X(z)\Vert _{\ell ^2}:=\Vert X\Vert _{\ell ^2},\end{aligned}$$

where \(\Vert X\Vert _{\ell ^2}:=\left( \sum _{k\in \mathbb {Z}}|X_k|^2\right) ^{\frac{1}{2}}\).

Theorem 13.6.2

Let \(A\in L^2([0 \ T],\mathbb {C}^{n\times m})\). Then, \(\mathcal {A}:=\mathcal {T}(A)\) is a bounded operator on \(\ell ^2\) if and only if \(A\in L^{\infty }([0\ T],\mathbb {C}^{n\times m} )\). Moreover, we have

  1. 1.

    the operator norm induced by the \(\ell ^2\)-norm satisfies

    $$\begin{aligned}\Vert A(z)\Vert _{\ell ^2}=\Vert \mathcal {A}\Vert _{\ell ^2}=\Vert A\Vert _{L^{\infty }}\end{aligned}$$
  2. 2.

    the operator norm of the semi-infinite Toeplitz matrix satisfies: \(\Vert \mathcal {T}_s(A)\Vert _{\ell ^2}=\Vert \mathcal {A}\Vert _{\ell ^2}\)

  3. 3.

    the operator norm of the Hankel operators \(\mathcal {H}(A^+)\), \(\mathcal {H}(A^-)\) satisfies \(\Vert \mathcal {H}(A^-)\Vert _{\ell ^2}\le \Vert A\Vert _{L^{\infty }}\) and \(\Vert \mathcal {H}(A^+)\Vert _{\ell ^2}\le \Vert A\Vert _{L^{\infty }}\)

  4. 4.

    the operator norm related to the left and right \(m-\)truncations satisfies: \(\Vert \mathcal {A}_{m^+}\Vert _{\ell ^2}=\Vert \mathcal {A}_{m^-}\Vert _{\ell ^2}=\Vert \mathcal {A}\Vert _{\ell ^2}=\Vert A\Vert _{L^\infty }\).

Proposition 13.6.3

Let \(P(\cdot )\) be a matrix function in \( L^\infty ([0 \ T],\mathbb {C}^{n\times n})\). Define \(\textbf{P}:=\mathcal {F}(P)\) and \(\mathcal {P}:=\mathcal {T}(P)\). If \(\Vert \textrm{col}(\textbf{P})\Vert _{\ell ^2}\le \epsilon \) then \(\Vert \mathcal {P}\Vert _{\ell ^2}\le \epsilon \).

Proof

Using Riesz–Fischer theorem, we have

$$\begin{aligned} \Vert \textrm{col}(\textbf{P})\Vert _{\ell ^2}&=\Vert \textrm{col}( P)\Vert _{L^2}=(\sum _{i,j=1}^n\Vert P_{ij}\Vert ^2_{L^2})^{1/2}=\Vert P\Vert _F, \end{aligned}$$

where \(\Vert P(t)\Vert _F\) stands for the Frobenius norm. As \(P \in L^\infty ([0 \ T],\mathbb {C}^{n\times n})\), H\(\ddot{\text{ o }}\)lder’s inequality implies \(Px\in L^2([0 \ T],\mathbb {C}^{n})\) for any \(x\in L^2([0 \ T],\mathbb {C}^{n})\). Thus, the result follows from the following relations between operator norms:

$$\begin{aligned} \Vert \mathcal {P}\Vert _{\ell ^2}&=\sup _{\Vert X\Vert _{\ell ^2}=1}(<\mathcal {P}X,\mathcal {P}X>_{\ell ^2})^{1/2}\\ &=\sup _{\Vert x\Vert _{L^2}=1}(<Px,Px)>_{L^2})^{1/2}\\ &\le (\text {trace}( P^*P))^{1/2}= \Vert P\Vert _F, \end{aligned}$$

where \(<\cdot ,\cdot >\) stands for the scalar product.    \(\square \)

Theorem 13.6.4

Let \(A(t)\in L^\infty ([0 \ T],\mathbb {C}^{n\times n})\). \(\mathcal {A}\) is invertible if and only if there exists \(\gamma >0\) such that the set \(\{t: |\det (A(t))|<\gamma \}\) has measure zero. The inverse \(\mathcal {A}^{-1}\) is determined by \(\mathcal {T}(A^{-1})\). In addition, \(\mathcal {A}\) is invertible if and only if \(\mathcal {A}\) is a Fredholm operator [10], or equivalently in this setting if and only if there exists \(c > 0\) such that

$$\begin{aligned}\Vert \mathcal {A}x\Vert _{\ell ^2} > c \Vert x\Vert _{\ell ^2},\text { for any } x \in \ell ^2.\end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vernerey, F., Riedinger, P., Daafouz, J. (2024). Harmonic Modeling and Control. In: Postoyan, R., Frasca, P., Panteley, E., Zaccarian, L. (eds) Hybrid and Networked Dynamical Systems. Lecture Notes in Control and Information Sciences, vol 493. Springer, Cham. https://doi.org/10.1007/978-3-031-49555-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49555-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49554-0

  • Online ISBN: 978-3-031-49555-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics