Abstract
Ontology matching is a widely used solution to the semantic heterogeneity problem in data integration or sharing. It consists of establishing mappings between entities that belong to different ontologies. However, as the number of ontologies is increasing for a given domain and the overlap between ontologies grows proportionally, it becomes crucial to develop more reliable and accurate techniques for the automation of this task. While traditional ontology mapping approaches are based on string metrics and structure analysis, some recent methods are using deep neural networks. In this article, we propose a novel approach for ontology matching based on Graph Neural Networks (GNN) as graph representations are helpful for entity and graph comparisons. Our approach is more precisely based on Multi-Head Attention Graph Isomorphism Network (MHAGIN). The results of experiments demonstrate the effectiveness of our approach compared with existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis.. Acquis. 5(2), 199–220 (1993)
Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. Knowl. Eng. Rev.. Eng. Rev. 18(1), 1–31 (2003). https://doi.org/10.1017/S0269888903000651
Jiménez-Ruiz, E., Grau, B.C., Zhou, Y., Horrocks, I.: Large-scale interactive ontology matching: algorithms and implementation. ECAI 242, 444–449 (2012)
Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F., Couto, F.M.: The AgreementMakerLight ontology matching system. In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., De Leenheer, P., Dou, D. (eds.) OTM 2013. LNCS, vol. 8185, pp. 527–541. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41030-7_38
Zhang, Y., et al.: Ontology matching with word embeddings. In: Sun, M., Liu, Y., Zhao, J. (eds.) CCL/NLP-NABD -2014. LNCS (LNAI), vol. 8801, pp. 34–45. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12277-9_4
Wang, L., Bhagavatula, C., Neumann, M., Lo, K., Wilhelm, C., Ammar, W.: Ontology alignment in the biomedical domain using entity definitions and context. In: Proceedings of the BioNLP 2018 Workshop, pp. 47–55 (2018). https://doi.org/10.18653/v1/w18-2306
Iyer, V., Agarwal, A., Kumar, H.: Veealign: a supervised deep learning approach to ontology alignment. In: Proceedings of the 15th International Workshop on Ontology Matching co-located with the 19th International Semantic Web Conference (ISWC 2020), Virtual conference (originally planned to be in Athens, Greece), Vol. 2788 of CEUR Workshop Proceedings, CEUR-WS.org, pp. 216–224 (2020)
Wang, P., Hu, Y.: Matching biomedical ontologies via a hybrid graph attention network. Front. Genet. 13, 893409 (2022). https://doi.org/10.3389/fgene.2022.893409
Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?. In: International Conf. on Learning Representations (ICLR) (2018). arXiv 2018:00826.1810
Bento, A., Zouaq, A., Gagnon, M.: Ontology matching using convolutional neural networks. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 5648–5653, Marseille, France. European Language Resources Association (2020)
He, Y., Chen, J., Antonyrajah, D., Horrocks, I.: BERTMap: a BERT-based ontology alignment system. In: Proceedings of the AAAI Conference on Artificial Intelligence (2022)
Hu, Y., Tang, Y., Huang, H., He, L.: A graph isomorphism network with weighted multiple aggregators for speech emotion recognition. Proc. Interspeech, 4705–4709 (2022)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks (2017). arXiv preprint arXiv:1710.10903
You, J., Ying, Z., Leskovec, J.: Design space for graph neural networks. In: Advances in Neural Information Processing Systems, vol. 33, pp. 17009–17021 (2020)
Hao, J., et al.: MEDTO: medical data to ontology matching using hybrid graph neural networks. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2021) (2021)
He, Y., Chen, J., Dong, H., Jiménez-Ruiz, E., Hadian, A., Horrocks, I.: Machine learning-friendly biomedical datasets for equivalence and subsumption ontology matching. arXiv preprint arXiv:2205.03447 (2022)
Lê Bach T.: Building a Multi-Perspective Semantic Web. PhD thesis in Computer Science. École des Mines de Nice at Sophia Antipolis (2006)
Kingma, D., Adam, B.J.: A method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015) (2015)
Cai, W., Ma, W., Zhan, J., Jiang, Y.: Entity alignment with reliable path reasoning and relation-aware heterogeneous graph transformer. In: International Joint Conference on Artificial Intelligence (2022)
Chen, J., He, Y., Geng, Y., Jimenez-Ruiz, E., Dong, H., Horrocks, I.: Contextual semantic embeddings for ontology subsumption prediction. World Wide Web, pp. 1–23 (2023)
Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. In: Proceedings of Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2019). arXiv preprint arXiv:1908.10084
Amberger, J.S., Bocchini, C.A., Schiettecatte, F., Scott, A.F., Hamosh, A.: OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43(D1), D789–D798 (2015)
Vasant, D., et al.: ORDO: an ontology connecting rare disease, epidemiology and genetic data. In: Proceedings of ISMB, vol. 30 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Oulefki, S., Berkani, L., Boudjenah, N., Kenai, I.E., Mokhtari, A. (2024). Ontology Matching Using Multi-head Attention Graph Isomorphism Network. In: Mosbah, M., Kechadi, T., Bellatreche, L., Gargouri, F. (eds) Model and Data Engineering. MEDI 2023. Lecture Notes in Computer Science, vol 14396. Springer, Cham. https://doi.org/10.1007/978-3-031-49333-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-49333-1_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49332-4
Online ISBN: 978-3-031-49333-1
eBook Packages: Computer ScienceComputer Science (R0)