Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ontology Matching Using Multi-head Attention Graph Isomorphism Network

  • Conference paper
  • First Online:
Model and Data Engineering (MEDI 2023)

Abstract

Ontology matching is a widely used solution to the semantic heterogeneity problem in data integration or sharing. It consists of establishing mappings between entities that belong to different ontologies. However, as the number of ontologies is increasing for a given domain and the overlap between ontologies grows proportionally, it becomes crucial to develop more reliable and accurate techniques for the automation of this task. While traditional ontology mapping approaches are based on string metrics and structure analysis, some recent methods are using deep neural networks. In this article, we propose a novel approach for ontology matching based on Graph Neural Networks (GNN) as graph representations are helpful for entity and graph comparisons. Our approach is more precisely based on Multi-Head Attention Graph Isomorphism Network (MHAGIN). The results of experiments demonstrate the effectiveness of our approach compared with existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://oaei.ontologymatching.org.

  2. 2.

    https://github.com/RDFLib/rdflib/blob/6.2.0/CHANGELOG.md.

  3. 3.

    https://www.cs.ox.ac.uk/isg/projects/ConCur/oaei/.

  4. 4.

    https://mondo.monarchinitiative.org/.

  5. 5.

    https://www.nlm.nih.gov/research/umls/index.html.

References

  1. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis.. Acquis. 5(2), 199–220 (1993)

    Article  Google Scholar 

  2. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. Knowl. Eng. Rev.. Eng. Rev. 18(1), 1–31 (2003). https://doi.org/10.1017/S0269888903000651

    Article  Google Scholar 

  3. Jiménez-Ruiz, E., Grau, B.C., Zhou, Y., Horrocks, I.: Large-scale interactive ontology matching: algorithms and implementation. ECAI 242, 444–449 (2012)

    Google Scholar 

  4. Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F., Couto, F.M.: The AgreementMakerLight ontology matching system. In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., De Leenheer, P., Dou, D. (eds.) OTM 2013. LNCS, vol. 8185, pp. 527–541. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41030-7_38

    Chapter  Google Scholar 

  5. Zhang, Y., et al.: Ontology matching with word embeddings. In: Sun, M., Liu, Y., Zhao, J. (eds.) CCL/NLP-NABD -2014. LNCS (LNAI), vol. 8801, pp. 34–45. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12277-9_4

    Chapter  Google Scholar 

  6. Wang, L., Bhagavatula, C., Neumann, M., Lo, K., Wilhelm, C., Ammar, W.: Ontology alignment in the biomedical domain using entity definitions and context. In: Proceedings of the BioNLP 2018 Workshop, pp. 47–55 (2018). https://doi.org/10.18653/v1/w18-2306

  7. Iyer, V., Agarwal, A., Kumar, H.: Veealign: a supervised deep learning approach to ontology alignment. In: Proceedings of the 15th International Workshop on Ontology Matching co-located with the 19th International Semantic Web Conference (ISWC 2020), Virtual conference (originally planned to be in Athens, Greece), Vol. 2788 of CEUR Workshop Proceedings, CEUR-WS.org, pp. 216–224 (2020)

    Google Scholar 

  8. Wang, P., Hu, Y.: Matching biomedical ontologies via a hybrid graph attention network. Front. Genet. 13, 893409 (2022). https://doi.org/10.3389/fgene.2022.893409

    Article  Google Scholar 

  9. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?. In: International Conf. on Learning Representations (ICLR) (2018). arXiv 2018:00826.1810

    Google Scholar 

  10. Bento, A., Zouaq, A., Gagnon, M.: Ontology matching using convolutional neural networks. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 5648–5653, Marseille, France. European Language Resources Association (2020)

    Google Scholar 

  11. He, Y., Chen, J., Antonyrajah, D., Horrocks, I.: BERTMap: a BERT-based ontology alignment system. In: Proceedings of the AAAI Conference on Artificial Intelligence (2022)

    Google Scholar 

  12. Hu, Y., Tang, Y., Huang, H., He, L.: A graph isomorphism network with weighted multiple aggregators for speech emotion recognition. Proc. Interspeech, 4705–4709 (2022)

    Google Scholar 

  13. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks (2017). arXiv preprint arXiv:1710.10903

  14. You, J., Ying, Z., Leskovec, J.: Design space for graph neural networks. In: Advances in Neural Information Processing Systems, vol. 33, pp. 17009–17021 (2020)

    Google Scholar 

  15. Hao, J., et al.: MEDTO: medical data to ontology matching using hybrid graph neural networks. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2021) (2021)

    Google Scholar 

  16. He, Y., Chen, J., Dong, H., Jiménez-Ruiz, E., Hadian, A., Horrocks, I.: Machine learning-friendly biomedical datasets for equivalence and subsumption ontology matching. arXiv preprint arXiv:2205.03447 (2022)

  17. Lê Bach T.: Building a Multi-Perspective Semantic Web. PhD thesis in Computer Science. École des Mines de Nice at Sophia Antipolis (2006)

    Google Scholar 

  18. Kingma, D., Adam, B.J.: A method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015) (2015)

    Google Scholar 

  19. Cai, W., Ma, W., Zhan, J., Jiang, Y.: Entity alignment with reliable path reasoning and relation-aware heterogeneous graph transformer. In: International Joint Conference on Artificial Intelligence (2022)

    Google Scholar 

  20. Chen, J., He, Y., Geng, Y., Jimenez-Ruiz, E., Dong, H., Horrocks, I.: Contextual semantic embeddings for ontology subsumption prediction. World Wide Web, pp. 1–23 (2023)

    Google Scholar 

  21. Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. In: Proceedings of Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2019). arXiv preprint arXiv:1908.10084

  22. Amberger, J.S., Bocchini, C.A., Schiettecatte, F., Scott, A.F., Hamosh, A.: OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43(D1), D789–D798 (2015)

    Google Scholar 

  23. Vasant, D., et al.: ORDO: an ontology connecting rare disease, epidemiology and genetic data. In: Proceedings of ISMB, vol. 30 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Oulefki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oulefki, S., Berkani, L., Boudjenah, N., Kenai, I.E., Mokhtari, A. (2024). Ontology Matching Using Multi-head Attention Graph Isomorphism Network. In: Mosbah, M., Kechadi, T., Bellatreche, L., Gargouri, F. (eds) Model and Data Engineering. MEDI 2023. Lecture Notes in Computer Science, vol 14396. Springer, Cham. https://doi.org/10.1007/978-3-031-49333-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49333-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49332-4

  • Online ISBN: 978-3-031-49333-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics