Nothing Special   »   [go: up one dir, main page]

Skip to main content

TimeLighting: Guidance-Enhanced Exploration of 2D Projections of Temporal Graphs

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2023)

Abstract

In temporal (or event-based) networks, time is a continuous axis, with real-valued time coordinates for each node and edge. Computing a layout for such graphs means embedding the node trajectories and edge surfaces over time in a \(2D + t\) space, known as the space-time cube. Currently, these space-time cube layouts are visualized through animation or by slicing the cube at regular intervals. However, both techniques present problems ranging from sub-par performance on some tasks to loss of precision. In this paper, we present TimeLighting, a novel visual analytics approach to visualize and explore temporal graphs embedded in the space-time cube. Our interactive approach highlights the node trajectories and their mobility over time, visualizes node “aging”, and provides guidance to support users during exploration. We evaluate our approach through two case studies, showing the system’s efficacy in identifying temporal patterns and the role of the guidance features in the exploration process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. PRO-12 Rugby Competition 2014–2015 Season Standings. http://rd.pro12rugby.com/matchcentre/table.php?includeref=11189 &season=2014-2015. Accessed 03 June 2023

  2. Ahn, J.W., Plaisant, C., Shneiderman, B.: A task taxonomy for network evolution analysis. IEEE Trans. Vis. Comput. Graphics 20(3), 365–376 (2014). https://doi.org/10.1109/TVCG.2013.238

    Article  Google Scholar 

  3. Archambault, D., Purchase, H., Pinaud, B.: Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE Trans. Visual Comput. Graphics (2011). https://doi.org/10.1109/TVCG.2010.78

    Article  Google Scholar 

  4. Archambault, D., Purchase, H.C.: Mental map preservation helps user orientation in dynamic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 475–486. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-2_42

    Chapter  Google Scholar 

  5. Archambault, D., Purchase, H.C.: The “map’’ in the mental map: experimental results in dynamic graph drawing. Int. J. Hum.-Comput. Stud. 71(11), 1044–1055 (2013)

    Article  Google Scholar 

  6. Archambault, D., Purchase, H.C.: Can animation support the visualisation of dynamic graphs? Inf. Sci. 330, 495–509 (2016). https://doi.org/10.1016/j.ins.2015.04.017

    Article  Google Scholar 

  7. Arleo, A., Miksch, S., Archambault, D.: Event-based dynamic graph drawing without the agonizing pain. Comput. Graphics Forum 41(6), 226–244 (2022). https://doi.org/10.1111/cgf.14615

    Article  Google Scholar 

  8. Bach, B., Dragicevic, P., Archambault, D., Hurter, C., Carpendale, S.: A descriptive framework for temporal data visualizations based on generalized space-time cubes. Comput. Graphics Forum 36(6), 36–61 (2017). https://doi.org/10.1111/cgf.12804

    Article  Google Scholar 

  9. Bach, B., Pietriga, E., Fekete, J.D.: GraphDiaries: animated transitions and temporal navigation for dynamic networks. IEEE Trans. Visual Comput. Graphics 20(5), 740–754 (2014). https://doi.org/10.1109/TVCG.2013.254

    Article  Google Scholar 

  10. Baur, M., et al.: Visone software for visual social network analysis. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 463–464. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_47

    Chapter  Google Scholar 

  11. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: A taxonomy and survey of dynamic graph visualization. Comput. Graphics Forum 36(1), 133–159 (2017). https://doi.org/10.1111/cgf.12791

    Article  Google Scholar 

  12. Brandes, U., Mader, M.: A quantitative comparison of stress-minimization approaches for offline dynamic graph drawing. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25878-7_11

    Chapter  Google Scholar 

  13. Ceneda, D., Arleo, A., Gschwandtner, T., Miksch, S.: Show me your face: towards an automated method to provide timely guidance in visual analytics. IEEE Trans. Visual Comput. Graphics 28(12), 4570–4581 (2022). https://doi.org/10.1109/TVCG.2021.3094870

    Article  Google Scholar 

  14. Ceneda, D., et al.: Characterizing guidance in visual analytics. IEEE Trans. Visual Comput. Graphics 23(1), 111–120 (2016). https://doi.org/10.1109/TVCG.2016.2598468

    Article  Google Scholar 

  15. Ceneda, D., Gschwandtner, T., Miksch, S.: A review of guidance approaches in visual data analysis: a multifocal perspective. Comput. Graphics Forum 38(3), 861–879 (2019). https://doi.org/10.1111/cgf.13730

    Article  Google Scholar 

  16. Eagle, N., Pentland, A.S.: Reality mining: sensing complex social systems. Pers. Ubiquit. Comput. 10(4), 255–268 (2006)

    Article  Google Scholar 

  17. Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: GraphAEL: graph animations with evolving layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 98–110. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_9

    Chapter  Google Scholar 

  18. Farrugia, M., Quigley, A.: Effective temporal graph layout: a comparative study of animation versus static display methods. J. Inf. Vis. 10(1), 47–64 (2011). https://doi.org/10.1057/ivs.2010.10

    Article  Google Scholar 

  19. Farrugia, M., Hurley, N., Quigley, A.: Exploring temporal ego networks using small multiples and tree-ring layouts. In: Proceedings of the International Conference on Advances in Computer-Human Interactions (2011)

    Google Scholar 

  20. Filipov, V., Arleo, A., Bögl, M., Miksch, S.: On network structural and temporal encodings: a space and time odyssey. IEEE Trans. Visual Comput. Graphics (2023). https://doi.org/10.1109/TVCG.2023.3310019

    Article  Google Scholar 

  21. Filipov, V., Arleo, A., Miksch, S.: Are we there yet? A roadmap of network visualization from surveys to task taxonomies. In: Computer Graphics Forum. Wiley Online Library (2023). https://doi.org/10.1111/cgf.14794

  22. Filipov, V., Ceneda, D., Archambault, D., Arleo, A.: TimeLighting: guidance-enhanced exploration of 2D projections of temporal graphs (2023). https://arxiv.org/abs/2308.12628

  23. Gladisch, S., Schumann, H., Tominski, C.: Navigation recommendations for exploring hierarchical graphs. In: Bebis, G., et al. (eds.) ISVC 2013, Part II. LNCS, vol. 8034, pp. 36–47. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41939-3_4

    Chapter  Google Scholar 

  24. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012). https://doi.org/10.1007/978-3-642-36461-7

    Article  Google Scholar 

  25. Lee, A., Archambault, D., Nacenta, M.: Dynamic network plaid: a tool for the analysis of dynamic networks. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–14 (2019). https://doi.org/10.1145/3290605.3300360

  26. Ljung, P., Krüger, J., Groller, E., Hadwiger, M., Hansen, C.D., Ynnerman, A.: State of the art in transfer functions for direct volume rendering. Comput. Graphics Forum 35(3), 669–691 (2016). https://doi.org/10.1111/cgf.12934

    Article  Google Scholar 

  27. May, T., Steiger, M., Davey, J., Kohlhammer, J.: Using signposts for navigation in large graphs. Comput. Graphics Forum 31(3pt2), 985–994 (2012). https://doi.org/10.1111/j.1467-8659.2012.03091.x

    Article  Google Scholar 

  28. Simonetto, P., Archambault, D., Kobourov, S.: Drawing dynamic graphs without timeslices. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 394–409. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1_31

    Chapter  Google Scholar 

  29. Simonetto, P., Archambault, D., Kobourov, S.: Event-based dynamic graph visualisation. IEEE Trans. Visual Comput. Graphics 26(7), 2373–2386 (2018). https://doi.org/10.1109/TVCG.2018.2886901

    Article  Google Scholar 

  30. Sondag, M., Turkay, C., Xu, K., Matthews, L., Mohr, S., Archambault, D.: Visual analytics of contact tracing policy simulations during an emergency response. Comput. Graphics Forum 41(3), 29–41 (2022). https://doi.org/10.1111/cgf.14520

    Article  Google Scholar 

  31. Wang, Y., Archambault, D., Haleem, H., Moeller, T., Wu, Y., Qu, H.: Nonuniform timeslicing of dynamic graphs based on visual complexity. In: 2019 IEEE Visualization Conference (VIS), pp. 1–5. IEEE (2019). https://doi.org/10.1109/VISUAL.2019.8933748

Download references

Acknowledgements

For the purpose of open access, the author has applied a Creative Commons Attribution (CC-BY) license to any Author Accepted Manuscript version arising from this submission. This work was conducted within the projects WWTF grant [10.47379/ICT19047], FFG grant DoRIAH [#880883], and FWF grant ArtVis [P35767].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velitchko Filipov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Filipov, V., Ceneda, D., Archambault, D., Arleo, A. (2023). TimeLighting: Guidance-Enhanced Exploration of 2D Projections of Temporal Graphs. In: Bekos, M.A., Chimani, M. (eds) Graph Drawing and Network Visualization. GD 2023. Lecture Notes in Computer Science, vol 14465. Springer, Cham. https://doi.org/10.1007/978-3-031-49272-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49272-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49271-6

  • Online ISBN: 978-3-031-49272-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics