Abstract
Early advancements in quantum computing have opened up new possibilities to tackle complex problems across various fields, including mathematics, physics, and healthcare. However, the technology required to construct systems where different quantum and classical software components collaborate is currently lacking. To address this, substantial progress in service-oriented quantum computing is necessary, empowering developers to create and operate quantum services and microservices that are comparable to their classical counterparts. The main objective of this work is to establish the essential technological infrastructure for integrating an Enterprise Service Bus (ESB). This integration enables developers to implement quantum algorithms through independent and automatable services, thereby facilitating the collaboration of quantum and classical software components. Additionally, this work has been validated through a practical case using Zato, a platform that supports service-oriented architectures. By achieving this goal, developers can harness the power of quantum computing while benefiting from the flexibility, scalability, and efficiency of service-oriented computing. This integration opens up new possibilities for developing advanced quantum applications and tackling real-world challenges across various domains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
References
Ahmad, A., Altamimi, A.B., Aqib, J.: A reference architecture for quantum computing as a service (2023)
Beisel, M., Barzen, J., Leymann, F., Truger, F., Weder, B., Yussupov, V.: Configurable readout error mitigation in quantum workflows. Electronics 11(19) (2022). https://doi.org/10.3390/electronics11192983
Cao, Y., et al.: Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856–10915 (2019). https://doi.org/10.1021/ACS.CHEMREV.8B00803
Commander, C.: Maximum cut problem, MAX-CUT . In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization. Springer, Boston, MA, pp. 1991–1999 (2008). https://doi.org/10.1007/978-0-387-74759-0_358
De Stefano, M., Di Nucci, D., Palomba, F., Taibi, D., De Lucia, A.: Towards quantum-algorithms-as-a-service. In: Proceedings of the 1st International Workshop on Quantum Programming for Software Engineering, QP4SE 2022, pp. 7–10. Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3549036.3562056
Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Prog. Phys. 81, 074001 (2018). https://doi.org/10.1088/1361-6633/AAB406
Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv arXiv1411.4028 (2014)
Forcer, T.M., Hey, A.J., Ross, D., Smith, P.: Superposition, entanglement and quantum computation. Quantum Inf. Comput. 2(2), 97–116 (2002)
Garcia-Alonso, J., Rojo, J., Valencia, D., Moguel, E., Berrocal, J., Murillo, J.M.: Quantum software as a service through a quantum API gateway. IEEE Internet Comput. 26(1), 34–41 (2022). https://doi.org/10.1109/MIC.2021.3132688
Hoffman, K.L., Padberg, M.: Traveling salesman problem (TSP) traveling salesman problem, pp. 849–853. Springer, US, New York, NY (2001). https://doi.org/10.1007/1-4020-0611-X_1068
Korte, B., Vygen, J.: The knapsack problem. In: Combinatorial Optimization. Algorithms and Combinatorics, vol. 21, pp. 397–406. Springer, Berlin (2002). https://doi.org/10.1007/978-3-662-21711-5_17
Moguel, E., Rojo, J., Valencia, D., Berrocal, J., Garcia-Alonso, J., Murillo, J.M.: Quantum service-oriented computing: current landscape and challenges. Software Qual. J. 30, 983–1002 (2022). https://doi.org/10.1007/S11219-022-09589-Y
Mohan, B., Das, S., Pati, A.K., Gholizadeh, A., Hadipour, M., Haseli, S.: Quantum speed limits: from heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A: Math. Theor. 50, 453001 (2017). https://doi.org/10.1088/1751-8121/AA86C6
Moll, N., et al.: Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol. 3(3), 030503 (2018). https://doi.org/10.1088/2058-9565/aab822
Pérez-Castillo, R., Piattini, M.: Design of classical-quantum systems with UML. Computing 104(11), 2375–2403 (2022). https://doi.org/10.1007/s00607-022-01091-4
Peruzzo, A., et al.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1) (2014). https://doi.org/10.1038/ncomms5213
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/s0097539795293172
Sych, D., Leuchs, G.: A complete basis of generalized bell states. New J. Phys. 11(1), 013006 (2009). https://doi.org/10.1088/1367-2630/11/1/013006
Vietz, D., Barzen, J., Leymann, F., Weder, B.: Splitting quantum-classical scripts for the generation of quantum workflows. In: Almeida, J.P.A., Karastoyanova, D., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds.) Enterprise Design, Operations, and Computing. EDOC 2022. LNCS, vol. 13585, pp 255–270. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17604-3_15
Weder, B., Breitenbücher, U., Leymann, F., Wild, K.: Integrating quantum computing into workflow modeling and execution. In: 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), pp. 279–291 (2020). https://doi.org/10.1109/UCC48980.2020.00046
Zhou, L., Wang, S.T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10(2) (2020). https://doi.org/10.1103/physrevx.10.021067
Acknowledgment
This work has been partially funded by MCIN/AEI/10.13039/501100011033 and by the EU “Next GenerationEU/PRTR”, by the Ministry of Science, Innovation and Universities (projects PID2021-1240454OB-C31, TED2021-130913B-I00, PDC2022-133465-I00). It is also supported by the QSALUD project (EXP 00135977/MIG-20201059) in the lines of action of the CDTI; by the Ministry of Economic Affairs and Digital Transformation of the Spanish Government through the Quantum ENIA project - Quantum Spain project; by the EU through the Recovery, Transformation, and Resilience Plan - NextGenerationEU within the framework of the Digital Spain 2025 Agenda; and by the Regional Ministry of Economy, Science and Digital Agenda (GR21133).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bonilla, J., Moguel, E., García-Alonso, J., Canal, C. (2024). Integration of Classical and Quantum Services Using an Enterprise Service Bus. In: Kadgien, R., Jedlitschka, A., Janes, A., Lenarduzzi, V., Li, X. (eds) Product-Focused Software Process Improvement. PROFES 2023. Lecture Notes in Computer Science, vol 14484. Springer, Cham. https://doi.org/10.1007/978-3-031-49269-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-49269-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49268-6
Online ISBN: 978-3-031-49269-3
eBook Packages: Computer ScienceComputer Science (R0)