Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Impossibility of Surviving (Iterated) Deletion of Weakly Dominated Strategies in Rational MPC

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2023)

Abstract

Rational multiparty computation (rational MPC) provides a framework for analyzing MPC protocols through the lens of game theory. One way to judge whether an MPC protocol is rational is through weak domination: Rational players would not adhere to an MPC protocol if deviating never decreases their utility, but sometimes increases it.

Secret reconstruction protocols are of particular importance in this setting because they represent the last phase of most (rational) MPC protocols. We show that most secret reconstruction protocols from the literature are not, in fact, stable with respect to weak domination. Furthermore, we formally prove that (under certain assumptions) it is impossible to design a secret reconstruction protocol which is a Nash equilibrium but not weakly dominated if (1) shares are authenticated or (2) half of all players may form a coalition.

This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Centre “On-The-Fly Computing“ under the project number 160364472 – SFB 901/3.

J. Bobolz—Work done while at Paderborn University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation. In: Proceedings of the 25th Annual Symposium on Principles of Distributed Computing, PODC, pp. 53–62. ACM (2006)

    Google Scholar 

  2. Asharov, G., Canetti, R., Hazay, C.: Towards a game theoretic view of secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 426–445. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_24

    Chapter  Google Scholar 

  3. Asharov, G., Lindell, Y.: Utility dependence in correct and fair rational secret sharing. J. Cryptol. 24(1), 157–202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., et al. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7_2

    Chapter  Google Scholar 

  5. Blömer, J., Bobolz, J., Bröcher, H.: On the impossibility of surviving (iterated) deletion of weakly dominated strategies in rational MPC. Cryptology ePrint Archive, Paper 2022/1762 (2022)

    Google Scholar 

  6. Chung, K.-M., Chan, T.-H.H., Wen, T., Shi, E.: Game-theoretic fairness meets multi-party protocols: the case of leader election. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 3–32. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_1

    Chapter  Google Scholar 

  7. Chung, K.-M., Guo, Y., Lin, W.-K., Pass, R., Shi, E.: Game theoretic notions of fairness in multi-party coin toss. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 563–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_21

    Chapter  MATH  Google Scholar 

  8. Dodis, Y., Halevi, S., Rabin, T.: A cryptographic solution to a game theoretic problem. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 112–130. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_7

    Chapter  Google Scholar 

  9. Dodis, Y., Rabin, T.: Cryptography and game theory. In: Algorithmic Game Theory, pp. 181–207 (2007)

    Google Scholar 

  10. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard communication networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 419–436. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_25

    Chapter  Google Scholar 

  11. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)

    Google Scholar 

  12. Gordon, S.D., Katz, J.: Rational secret sharing, revisited. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006). https://doi.org/10.1007/11832072_16

    Chapter  Google Scholar 

  13. Groce, A., Katz, J.: Fair computation with rational players. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 81–98. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_7

    Chapter  Google Scholar 

  14. Halpern, J.Y., Teague, V.: Rational secret sharing and multiparty computation: extended abstract. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 623–632. ACM (2004)

    Google Scholar 

  15. Hillas, J., Samet, D.: Dominance rationality: a unified approach. Games Econ. Behav. 119, 189–196 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hubáček, P., Nielsen, J.B., Rosen, A.: Limits on the power of cryptographic cheap talk. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 277–297. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_16

    Chapter  Google Scholar 

  17. Katz, J.: Bridging game theory and cryptography: recent results and future directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_15

    Chapter  MATH  Google Scholar 

  18. Kol, G., Naor, M.: Cryptography and game theory: designing protocols for exchanging information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_18

    Chapter  MATH  Google Scholar 

  19. Kol, G., Naor, M.: Games for exchanging information. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 423–432 (2008)

    Google Scholar 

  20. Lysyanskaya, A., Triandopoulos, N.: Rationality and adversarial behavior in multi-party computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 180–197. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_11

    Chapter  MATH  Google Scholar 

  21. Manshaei, M.H., Zhu, Q., Alpcan, T., Bacşar, T., Hubaux, J.P.: Game theory meets network security and privacy. ACM Comput. Surv. (CSUR) 45(3), 1–39 (2013)

    Article  MATH  Google Scholar 

  22. Rabin, T.: Robust sharing of secrets when the dealer is honest or cheating. J. ACM 41(6), 1089–1109 (1994)

    Article  Google Scholar 

  23. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 73–85. ACM (1989)

    Google Scholar 

  24. Samuelson, L.: Dominated strategies and common knowledge. Games Econ. Behav. 4(2), 284–313 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stahl, D.O.: Lexicographic rationalizability and iterated admissibility. Econ. Lett. 47(2), 155–159 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, K., Asharov, G., Shi, E.: A complete characterization of game-theoretically fair, multi-party coin toss. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13275, pp. 120–149. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06944-4_5

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their valuable feedback and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Bröcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blömer, J., Bobolz, J., Bröcher, H. (2023). On the Impossibility of Surviving (Iterated) Deletion of Weakly Dominated Strategies in Rational MPC. In: Rothblum, G., Wee, H. (eds) Theory of Cryptography. TCC 2023. Lecture Notes in Computer Science, vol 14369. Springer, Cham. https://doi.org/10.1007/978-3-031-48615-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48615-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48614-2

  • Online ISBN: 978-3-031-48615-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics