Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Approach for Identifying Skin Diseases from Dermatological RGB Images Using Source Separation

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14122))

Included in the following conference series:

Abstract

In this article, we propose a new BSS approach for identifying skin diseases from RGB images that proceeds in two steps. We begin by separating the three main chromophores (oxyhemoglobin, deoxyhemoglobin and melanin) using Non-negative Matrix Factorization (NMF). For this purpose, we propose a special initialization of the solution matrices based on the sparsity of the chromophores, instead of initializing them with random matrices as is the case for basic versions of NMF. We then propose a new disease identification criterion that exploits the three contributions of each chromophore on the three spectral bands of our RGB dermatological image. To validate our approach, we used an open access database containing RGB images of melanoma and neavus. The results obtained showed good performance for our approach in terms of chromophore separation, compared to the most commonly used method in the literature, as well as disease identification compared to identification based on the most popular criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Indeed, for example a biopsy is painful, costly and time-consuming, especially considering that it may need to be repeated for further examination.

  2. 2.

    The goal of this transformation defined by the operator f(.) is to transform a matrix of dimensions \(n_x\times n_y\) into a row matrix of dimension \(1\times n_x\cdot n_y\), by assembling its columns one after the other.

  3. 3.

    A signal is sparse if the majority of its elements are zero or very close to zero.

  4. 4.

    According to the information provided in [21].

  5. 5.

    The median corresponds to the value located in the middle of the data. It divides the data into two equal parts, such that 50% of the values are below the median and 50% are above it.

References

  1. Abrard, F., Deville, Y.: A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Signal Process. 85(7), 1389–1403 (2005)

    Article  MATH  Google Scholar 

  2. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 798–805. IEEE (2006)

    Google Scholar 

  3. Anderson, R.R., Parrish, J.A.: The optics of human skin. J. Investig. Dermatol. 77(1), 13–19 (1981)

    Article  Google Scholar 

  4. Besse, P.: https://www.math.univ-toulouse.fr/$~$besse/Wikistat/pdf/st-m-explo-nmf.pdf. Accessed 28 Mar 2023

  5. Boutsidis, C., Gallopoulos, E.: Svd based initialization: a head start for nonnegative matrix factorization. Pattern Recogn. 41(4), 1350–1362 (2008)

    Article  MATH  Google Scholar 

  6. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent component analysis and applications. Academic press (2010)

    Google Scholar 

  7. Févotte, C., Idier, J.: Algorithms for nonnegative matrix factorization with the \(\beta \)-divergence. Neural Comput. 23(9), 2421–2456 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: a computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Syst. Appl. 42(19), 6578–6585 (2015)

    Article  Google Scholar 

  9. Gong, H., Desvignes, M.: Hemoglobin and melanin quantification on skin images. In: International Conference Image Analysis and Recognition, pp. 198–205. Springer (2012)

    Google Scholar 

  10. Jacques, S.L.: https://omlc.org/~jacquess/library.html. Accessed 28 Mar 2023

  11. Jacques, S.L., Samatham, R., Choudhury, N.: Rapid spectral analysis for spectral imaging. Biomed. Opt. Express 1(1), 157–164 (2010)

    Article  Google Scholar 

  12. Koprowski, R.: Processing of hyperspectral medical images (2017)

    Google Scholar 

  13. Kuzmina, I., Diebele, I., Asare, L., Kempele, A., Abelite, A., Jakovels, D., Spigulis, J.: Multispectral imaging of pigmented and vascular cutaneous malformations: the influence of laser treatment. In: Laser Applications in Life Sciences, vol. 7376, pp. 144–149. SPIE (2010)

    Google Scholar 

  14. Kuzmina, I., et al.: Towards noncontact skin melanoma selection by multispectral imaging analysis. J. Biomed. Opt. 16(6), 060502 (2011)

    Article  Google Scholar 

  15. Kuzmina, I., et al.: Skin chromophore mapping by smartphone rgb camera under spectral band and spectral line illumination. J. Biomed. Opt. 27(2), 026004 (2022)

    Article  Google Scholar 

  16. Lee, D., Seung, H.: Algorithms for non-negative matrix factorization. Adv. Neural Inform. Process. Syst. 13, February 2001

    Google Scholar 

  17. Lee, D.H.: A new edge-based intra-field interpolation method for deinterlacing using locally adaptive-thresholded binary image. IEEE Trans. Consum. Electron. 54(1), 110–115 (2008)

    Article  Google Scholar 

  18. Lihachev, A., Lihacova, I., Plorina, E.V., Lange, M., Derjabo, A., Spigulis, J.: Differentiation of seborrheic keratosis from basal cell carcinoma, nevi and melanoma by rgb autofluorescence imaging. Biomed. Opt. Express 9(4), 1852–1858 (2018)

    Article  Google Scholar 

  19. Lihacova, I.: Evaluation of skin oncologic pathologies by multispectral imaging methods. Ph.D. thesis, July 2015. https://doi.org/10.13140/RG.2.2.12585.70242

  20. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19(10), 2756–2779 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. LLC, L.: https://www.maxmax.com/nikon_d3x.htm. Accessed 28 Mar 2023

  22. Naik, G.R., Wang, W., et al.: Blind source separation. Berlin: Springer 10, 978–3 (2014)

    Google Scholar 

  23. Ojima, N., Akazaki, S., Hori, K., Tsumura, N., Miyake, Y.: Application of image-based skin chromophore analysis to cosmetics. J. Imaging Sci. Technol. 48(3), 222–226 (2004)

    Article  Google Scholar 

  24. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  25. Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)

    Article  Google Scholar 

  26. Saknite, I., Jakovels, D., Spigulis, J.: Diffuse reflectance and fluorescence multispectral imaging system for assessment of skin. In: Biophotonics: Photonic Solutions for Better Health Care IV, vol. 9129, pp. 593–598. SPIE (2014)

    Google Scholar 

  27. Spigulis, J., Oshina, I.: 3\(\times \) 3 technique for rgb snapshot mapping of skin chromophores. In: Optics and the Brain, pp. JT3A-39. Optica Publishing Group (2015)

    Google Scholar 

  28. Spigulis, J., Oshina, I., Berzina, A., Bykov, A.: Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination. J. Biomed. Opt. 22(9), 091508 (2017)

    Article  Google Scholar 

  29. Van Gemert, M., Jacques, S.L., Sterenborg, H., Star, W.: Skin optics. IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989)

    Article  Google Scholar 

  30. Yamamoto, T., Takiwaki, H., Arase, S., Ohshima, H.: Derivation and clinical application of special imaging by means of digital cameras and image j freeware for quantification of erythema and pigmentation. Skin Res. Technol. 14(1), 26–34 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Zokay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zokay, M., Saylani, H. (2024). A New Approach for Identifying Skin Diseases from Dermatological RGB Images Using Source Separation. In: Waiter, G., Lambrou, T., Leontidis, G., Oren, N., Morris, T., Gordon, S. (eds) Medical Image Understanding and Analysis. MIUA 2023. Lecture Notes in Computer Science, vol 14122. Springer, Cham. https://doi.org/10.1007/978-3-031-48593-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48593-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48592-3

  • Online ISBN: 978-3-031-48593-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics