Nothing Special   »   [go: up one dir, main page]

Skip to main content

Remaining Time Prediction for Collaborative Business Processes with Privacy Preservation

  • Conference paper
  • First Online:
Service-Oriented Computing (ICSOC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14420))

Included in the following conference series:

  • 640 Accesses

Abstract

In collaborative business processes that involve multiple organizations, privacy concerns prevent organizations from sharing the raw data of their activities. This makes it challenging to predict remaining time without access to data on completed activities of other organizations. To address this challenge, this research proposes a strategy for predicting remaining time in collaborative business processes, which involve sequential sub-processes executed by different partners, while preserving the privacy of organizations. The proposed strategy involves transferring latent information from precedent sub-processes to the models of latter sub-processes, rather than raw data. Two models were designed to implement this strategy, and the experimental results indicate that the prediction accuracy of the models is comparable to that of models that use raw data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

  2. 2.

    https://doi.org/10.4121/uuid:453e8ad1-4df0-4511-a916-93f46a37a1b5.

  3. 3.

    https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51.

  4. 4.

    https://www.promtools.org/.

References

  1. Van der Aalst, W.M., Rubin, V., Verbeek, H., van Dongen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step approach to balance between underfitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)

    Article  Google Scholar 

  2. Abdulrahman, S., Tout, H., Ould-Slimane, H., Mourad, A., Talhi, C., Guizani, M.: A survey on federated learning: the journey from centralized to distributed on-site learning and beyond. IEEE Internet Things J. 8(7), 5476–5497 (2021). https://doi.org/10.1109/JIOT.2020.3030072

    Article  Google Scholar 

  3. Abedi, A., Khan, S.S.: FedSL: federated split learning on distributed sequential data in recurrent neural networks. CoRR abs/2011.03180 (2020). https://arxiv.org/abs/2011.03180

  4. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  5. Bukhsh, Z.A., Saeed, A., Dijkman, R.M.: Processtransformer: predictive business process monitoring with transformer network. arXiv abs/2104.00721 (2021)

    Google Scholar 

  6. Thapa, C., Arachchige, P.C.M., Camtepe, S., Sun, L.: Splitfed: when federated learning meets split learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8485–8493 (2022)

    Google Scholar 

  7. Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M., ter Hofstede, A.H.: A recommendation system for predicting risks across multiple business process instances. Decis. Support Syst. 69, 1–19 (2015)

    Article  Google Scholar 

  8. Elkoumy, G., Pankova, A., Dumas, M.: Mine me but don’t single me out: differentially private event logs for process mining. In: 2021 3rd International Conference on Process Mining (ICPM), pp. 80–87 (2021)

    Google Scholar 

  9. Evermann, J., Rehse, J.-R., Fettke, P.: A deep learning approach for predicting process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 327–338. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7_24

    Chapter  Google Scholar 

  10. Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRIPEL: privacy-preserving event log publishing including contextual information. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 111–128. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_7

    Chapter  Google Scholar 

  11. Fan, L., et al.: Rethinking privacy preserving deep learning: how to evaluate and thwart privacy attacks. arXiv abs/2006.11601 (2020)

    Google Scholar 

  12. Hamrouni, I., Lahdhiri, H., Ben Abdellafou, K., Aljuhani, A., Taouali, O.: Anomaly detection for process monitoring based on machine learning technique. Neural Comput. Appl. 35(5), 4073–4097 (2022). https://doi.org/10.1007/s00521-022-07901-2

    Article  Google Scholar 

  13. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2017)

    Article  Google Scholar 

  14. Navarin, N., Vincenzi, B., Polato, M., Sperduti, A.: LSTM networks for data-aware remaining time prediction of business process instances. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7 (2017). https://doi.org/10.1109/SSCI.2017.8285184

  15. Ogunbiyi, N., Basukoski, A., Chaussalet, T.: Investigating social contextual factors in remaining-time predictive process monitoring-a survival analysis approach. Algorithms 13(11), 267 (2020). https://doi.org/10.3390/a13110267

    Article  Google Scholar 

  16. Park, G., Song, M.: Predicting performances in business processes using deep neural networks. Decis. Support Syst. 129, 113191 (2020). https://doi.org/10.1016/j.dss.2019.113191

    Article  Google Scholar 

  17. Pauwels, S., Calders, T.: Incremental predictive process monitoring: the next activity case. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 123–140. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_10

    Chapter  Google Scholar 

  18. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time prediction of business process instances. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 816–823 (2014). https://doi.org/10.1109/IJCNN.2014.6889360

  19. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_27

    Chapter  Google Scholar 

  20. Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-markovian stochastic petri nets. Inf. Syst. 54(C), 1–14 (2015). https://doi.org/10.1016/j.is.2015.04.004

  21. Ryu, J., Won, D., Lee, Y.: A study of split learning model. In: 2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM), pp. 1–4 (2022). https://doi.org/10.1109/IMCOM53663.2022.9721798

  22. Senderovich, A., Di Francescomarino, C., Ghidini, C., Jorbina, K., Maggi, F.M.: Intra and inter-case features in predictive process monitoring: a tale of two dimensions. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 306–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_18

    Chapter  Google Scholar 

  23. van der Spoel, S., van Keulen, M., Amrit, C.: Process prediction in noisy data sets: a case study in a Dutch hospital. In: Cudre-Mauroux, P., Ceravolo, P., Gašević, D. (eds.) SIMPDA 2012. LNBIP, vol. 162, pp. 60–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40919-6_4

    Chapter  Google Scholar 

  24. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  25. Taymouri, F., La Rosa, M., Erfani, S.M.: A deep adversarial model for suffix and remaining time prediction of event sequences. In: Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pp. 522–530 (2021). https://doi.org/10.1137/1.9781611976700.59

  26. Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business process monitoring with structured and unstructured data. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_23

    Chapter  Google Scholar 

  27. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. ACM Trans. Knowl. Discov. Data 13(2), 1–57 (2019). https://doi.org/10.1145/3301300

    Article  Google Scholar 

  28. Van Der Aalst, W.: Process mining. Commun. ACM 55(8), 76–83 (2012)

    Article  Google Scholar 

  29. Vandenabeele, J., Vermaut, G., Peeperkorn, J., Weerdt, J.D.: Enhancing stochastic petri net-based remaining time prediction using k-nearest neighbors. arXiv abs/2206.13109 (2022)

    Google Scholar 

  30. Verenich, I., Dumas, M., Rosa, M.L., Maggi, F.M., Teinemaa, I.: Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring. ACM Trans. Intell. Syst. Technol. (TIST) 10(4), 1–34 (2019)

    Article  Google Scholar 

  31. Wahid, N.A., Bae, H., Adi, T.N., Choi, Y., Iskandar, Y.A.: Parallel-structure deep learning for prediction of remaining time of process instances. Appl. Sci. 11(21), 9848 (2021). https://doi.org/10.3390/app11219848

    Article  Google Scholar 

  32. Wang, J., Chang, V., Yu, D., Liu, C., Ma, X., Yu, D.: Conformance-oriented predictive process monitoring in BPaaS based on combination of neural networks. J. Grid Comput. 20(3), 25 (2022). https://doi.org/10.1007/s10723-022-09613-2

    Article  Google Scholar 

  33. Xu, X., Liu, C., Li, T., Guo, N., Ren, C.G., Zeng, Q.T.: Business process remaining time prediction: an approach based on bidirectional quasi recurrent neural network with attention. Acta Electronica Sinica 50(8), 1975–1984 (2022)

    Google Scholar 

  34. Yin, X., Zhu, Y., Hu, J.: A comprehensive survey of privacy-preserving federated learning: a taxonomy, review, and future directions. ACM Comput. Surv. 54(6), 1–36 (2021). https://doi.org/10.1145/3460427

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by China National Science Foundation (Granted Number 62072301) and the Program of Technology Innovation of the Science and Technology Commission of Shanghai Municipality (Granted No. 21511104700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, J., Wang, C., Guan, W., Qian, S., Zhao, H. (2023). Remaining Time Prediction for Collaborative Business Processes with Privacy Preservation. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds) Service-Oriented Computing. ICSOC 2023. Lecture Notes in Computer Science, vol 14420. Springer, Cham. https://doi.org/10.1007/978-3-031-48424-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48424-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48423-0

  • Online ISBN: 978-3-031-48424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics