Abstract
Artifact-driven process monitoring is an effective technique to autonomously monitor business processes. Instead of requiring human operators to notify when an activity is executed, artifact-driven process monitoring infers this information from the conditions of physical or virtual objects taking part in a process. However, SMARTifact, the existing monitoring platform implementing this technique, has been designed to run entirely on edge devices, each of which can monitor only one execution of the process. Thus, monitoring multiple executions at the same time, or reducing the computational requirements of edge devices is not possible. In this paper, we introduce a new artifact-driven monitoring platform that overcomes these limitations and makes artifact-driven monitoring fully scalable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Source code available at https://github.com/eGSM-platform.
References
Baresi, L., Di Ciccio, C., Mendling, J., Meroni, G., Plebani, P.: martifact: an artifact-driven process monitoring platform. In: BPM Demo Track 2017. vol. 1920. CEUR-WS.org (2017)
Burattin, A.: Online conformance checking for petri nets and event streams. In: BPM Demo Track 2017. vol. 1920. CEUR-WS.org (2017)
Comuzzi, M., Vanderfeesten, I., Wang, T.: Optimized cross-organizational business process monitoring: design and enactment. Information Sciences 244, 107–118 (2013). https://doi.org/10.1016/j.ins.2013.04.036
Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals Of Business Process Management. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33143-5
Eckermann, O., Weidlich, M.: Flexible artifact-driven automation of product design processes. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., Schmidt, R., Bider, I. (eds.) Enterprise, Business-Process and Information Systems Modeling, pp. 103–117. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21759-3_8
Friedow, C., Völker, M., Hewelt, M.: Integrating IoT devices into business processes. In: Matulevičius, R., Dijkman, R. (eds.) Advanced Information Systems Engineering Workshops: CAiSE 2018 International Workshops, Tallinn, Estonia, June 11-15, 2018, Proceedings, pp. 265–277. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-92898-2_22
Gallik, F., Kirikkayis, Y., Reichert, M.: Modeling, executing and monitoring IoT-aware processes with BPM technology. In: ICSS 2022, pp. 96–103. IEEE (2022)
Heath <suffix>III</suffix>, F.T., et al.: Barcelona: a design and runtime environment for declarative artifact-centric BPM. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) Service-Oriented Computing: 11th International Conference, ICSOC 2013, Berlin, Germany, December 2-5, 2013, Proceedings, pp. 705–709. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_65
Lei, J., Bai, R., Guo, L., Zhang, L.: Towards a scalable framework for artifact-centric business process management systems. In: WISE 2016. vol. 10042, pp. 309–323 (2016)
Liu, R., Vaculín, R., Shan, Z., Nigam, A., Wu, F.: Business artifact-centric modeling for real-time performance monitoring. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) Business Process Management, pp. 265–280. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23059-2_21
Maamar, Z., et al.: Bridging the gap between the business and social worlds: a data artifact-driven approach. Trans. Large Scale Data Knowl. Centered Syst. 35, 27–49 (2017)
Meroni, G.: Artifact-Driven Business Process Monitoring: A Novel Approach to Transparently Monitor Business Processes, Supported by Methods, Tools, and Real-World Applications. Springer International Publishing, Cham (2019)
Schuster, D., Kolhof, G.J.: Scalable online conformance checking using incremental prefix-alignment computation. In: Hacid, H., et al. (eds.) Service-Oriented Computing – ICSOC 2020 Workshops: AIOps, CFTIC, STRAPS, AI-PA, AI-IOTS, and Satellite Events, Dubai, United Arab Emirates, December 14–17, 2020, Proceedings, pp. 379–394. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-76352-7_36
Seiger, R., Zerbato, F., Burattin, A., García-Bañuelos, L., Weber, B.: Towards IoT-driven process event log generation for conformance checking in smart factories. In: EDOC Workshops 2020, pp. 20–26. IEEE (2020)
Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing: platform and applications. In: HotWeb 2015, pp. 73–78. IEEE (2015)
van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van der Aalst, W.M.P.: Online conformance checking: relating event streams to process models using prefix-alignments. Int. J. Data Sci. Anal. 8(3), 269–284 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Meroni, G., Garda, S. (2023). Artifact-Driven Process Monitoring at Scale. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds) Service-Oriented Computing. ICSOC 2023. Lecture Notes in Computer Science, vol 14420. Springer, Cham. https://doi.org/10.1007/978-3-031-48424-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-48424-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48423-0
Online ISBN: 978-3-031-48424-7
eBook Packages: Computer ScienceComputer Science (R0)