Abstract
The proliferation of GPS-enabled devices has resulted in massive trajectory data streams. Moving objects’ trajectories contain patterns which are useful for many applications, for instance, traffic monitoring, fleet management, etc. Pattern matching is a prerequisite of complex event processing, which is used to find complex patterns in data sequences. A number of distributed frameworks, like Apache Flink, Storm, etc., support pattern matching and complex event processing. However, they do not natively support pattern matching over trajectory streams. To address this problem, we propose a framework, TraPM, to support online pattern matching over trajectory streams. In addition, to accelerate spatial predicate evaluation, TraPM utilizes spatial indexing, i.e., Rtree and grid index. Moreover, it employs partition-based data distribution to distribute data across the cluster nodes. Extensive experiments on a real dataset demonstrate that our proposed framework can effectively detect patterns from trajectory streams and achieve higher throughput than the baseline approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, S., Bao, Z., Shane Culpepper, J., Cong, G.: A survey on trajectory data management, analytics, and learning. ACM Comput. Surv. (CSUR) 54(2), 1–36 (2021)
Masciari, E., Gao, S., Zaniolo, C.: Sequential pattern mining from trajectory data. In: 17th International Database Engineering & Applications (IDEAS’13), pp. 162–167 (2013)
Da Silva, T.C., Zeitouni, K., de Macedo, J., Casanova, M.: A framework for online mobility pattern discovery from trajectory data streams. In: 17th IEEE International Conference on Mobile Data Management (MDM), pp. 365–368 (2016)
Chen, L., Gao, Y., Fang, Z., Miao, X., Jensen, C.S., Guo, C.: Real-time distributed co-movement pattern detection on streaming trajectories. Proc. VLDB Endow. 12(10), 1208–1220 (2019)
Fang, Z., Yunjun G.L., Chen, P.L., Miao, X., Jensen, C.S.: Coming: a real-time co-movement mining system for streaming trajectories. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (SIGMOD’20), pp. 2777–2780 (2020)
Yadamjav, M., Bao, Z., Zheng, B., Choudhury, F., Samet, H.: Querying recurrent convoys over trajectory data. ACM Trans. Intell. Syst. Technol. 11(5), 1–24 (2020)
Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., Garofalakis, M.: Complex event recognition in the big data era: a survey. VLDB J. 29, 313–352 (2020)
Apache Flink Project. https://flink.apache.org/. Accessed 15 July 2023
Spark Streaming. https://spark.apache.org/streaming/. Accessed 15 July 2023
Apache Storm. https://storm.apache.org/. Accessed 15 July 2023
Teroso-Saenz, F., Valdes-Vela, M., den Breejen, E., Hanckmann, P., Dekker, R., Skarmeta-Gomez, A.F.: CEP-traj: an event-based solution to process trajectory data. Inf. Syst. 52, 34–54 (2015)
Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., Theodoridis, Y.: Online event recognition from moving vessel trajectories. GeoInformatica 21(2), 389–427 (2017)
Ntoulias, E., Alevizos, E., Artikis, A., Akasiadis, C., Koumparos, A.: Online fleet monitoring with scalable event recognition and forecasting. GeoInformatica 26, 613–644 (2022)
Khazael, B., Asl, M.V., Malazi, H.T.: Geospatial complex event processing in smart city applications. Simul. Model. Pract. Theory 122, 102675 (2023)
Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over event streams. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD ’08), pp. 147–160 (2008)
Zhang, H., Diao, Y., Immerman, N.: On complexity and optimization of expensive queries in complex event processing. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD’14), pp. 217–228 (2014)
Demers, A.J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.M.: Cayuga: a general-purpose event monitoring system. In: 3rd Biennial Conference on Innovative Data Systems Research (CIDR) (2007)
Siddhi CEP. https://github.com/wso2/siddhi. Accessed 18 July 2023
Esper. https://www.espertech.com/esper. Accessed 18 July 2023
FlinkCEP. https://nightlies.apache.org/flink/flink-docs-master/docs/libs/cep. Accessed 19 July 2023
Artikis, A., Sergot, M., Paliouras, G.: An event calculus for event recognition. IEEE Trans. Knowl. Data Eng. 27(4), 895–908 (2014)
Dousson, C., Maigat, P.L.: Chronicle recognition improvement using temporal focusing and hierarchization. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence (IJCAI’07), pp. 324–329 (2007)
Mei, Y., Madden, S.: ZStream: a cost-based query processor for adaptively detecting composite events. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data (SIGMOD), pp. 193–206 (2009)
Flink Pattern Recognition. https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/dev/table/sql/queries/match_recognize/. Accessed 20 July 2023
ISO/IEC TR 19075–5:2021, Information technology - Guidance for the use of data-base language SQL. https://www.iso.org/standard/78936.html. Accessed 20 Jun 2023
Huang, X., et al.: Grab-Posisi: an extensive real-life GPS trajectory dataset in Southeast Asia. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Prediction of Human Mobility (PredictGIS’19), pp. 1–10 (2019)
Shaikh, S.A., Kitagawa, H., Matono, A., Kim, K.S.: TStream: a framework for real-time and scalable trajectory stream processing and analysis. In: Proceedings of the 30th International Conference on Advances in Geographic Information Systems (SIGSPATIAL’22), pp. 1–4 (2022)
Shaikh, S.A., Mariam, K., Kitagawa, H., Kim, K.S.: GeoFlink: a distributed and scalable framework for the real-time processing of spatial streams. In: Proceeding of the 29th ACM International Conference on Information and Knowledge Management (CIKM), pp. 3149–3156 (2020)
Shaikh, S.A., Kitagawa, H., Matono, A., Mariam, K., Kim, K.S.: GeoFlink: an efficient and scalable spatial data stream management system. IEEE Access 10, 24909–24935 (2022)
Acknowledgement
This paper is based on results obtained from “Research and Development Project of the Enhanced Infrastructures for Post-5G Information and Communication Systems” (JPNP20017) commissioned by NEDO, JPNP14004 commissioned by NEDO, JST CREST Grant Number JPMJCR22M2, AMED Grant Number JP21zf0127005, and JSPS KAKENHI Grant Numbers JP22H03694 and JP23H03399.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Trisminingsih, R., Shaikh, S.A., Amagasa, T., Kitagawa, H., Matono, A. (2023). TraPM: A Framework for Online Pattern Matching Over Trajectory Streams. In: Delir Haghighi, P., et al. Information Integration and Web Intelligence. iiWAS 2023. Lecture Notes in Computer Science, vol 14416. Springer, Cham. https://doi.org/10.1007/978-3-031-48316-5_45
Download citation
DOI: https://doi.org/10.1007/978-3-031-48316-5_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48315-8
Online ISBN: 978-3-031-48316-5
eBook Packages: Computer ScienceComputer Science (R0)