Nothing Special   »   [go: up one dir, main page]

Skip to main content

TraPM: A Framework for Online Pattern Matching Over Trajectory Streams

  • Conference paper
  • First Online:
Information Integration and Web Intelligence (iiWAS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14416))

  • 546 Accesses

Abstract

The proliferation of GPS-enabled devices has resulted in massive trajectory data streams. Moving objects’ trajectories contain patterns which are useful for many applications, for instance, traffic monitoring, fleet management, etc. Pattern matching is a prerequisite of complex event processing, which is used to find complex patterns in data sequences. A number of distributed frameworks, like Apache Flink, Storm, etc., support pattern matching and complex event processing. However, they do not natively support pattern matching over trajectory streams. To address this problem, we propose a framework, TraPM, to support online pattern matching over trajectory streams. In addition, to accelerate spatial predicate evaluation, TraPM utilizes spatial indexing, i.e., Rtree and grid index. Moreover, it employs partition-based data distribution to distribute data across the cluster nodes. Extensive experiments on a real dataset demonstrate that our proposed framework can effectively detect patterns from trajectory streams and achieve higher throughput than the baseline approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/rinatrismi/TraPM.

References

  1. Wang, S., Bao, Z., Shane Culpepper, J., Cong, G.: A survey on trajectory data management, analytics, and learning. ACM Comput. Surv. (CSUR) 54(2), 1–36 (2021)

    Google Scholar 

  2. Masciari, E., Gao, S., Zaniolo, C.: Sequential pattern mining from trajectory data. In: 17th International Database Engineering & Applications (IDEAS’13), pp. 162–167 (2013)

    Google Scholar 

  3. Da Silva, T.C., Zeitouni, K., de Macedo, J., Casanova, M.: A framework for online mobility pattern discovery from trajectory data streams. In: 17th IEEE International Conference on Mobile Data Management (MDM), pp. 365–368 (2016)

    Google Scholar 

  4. Chen, L., Gao, Y., Fang, Z., Miao, X., Jensen, C.S., Guo, C.: Real-time distributed co-movement pattern detection on streaming trajectories. Proc. VLDB Endow. 12(10), 1208–1220 (2019)

    Article  Google Scholar 

  5. Fang, Z., Yunjun G.L., Chen, P.L., Miao, X., Jensen, C.S.: Coming: a real-time co-movement mining system for streaming trajectories. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (SIGMOD’20), pp. 2777–2780 (2020)

    Google Scholar 

  6. Yadamjav, M., Bao, Z., Zheng, B., Choudhury, F., Samet, H.: Querying recurrent convoys over trajectory data. ACM Trans. Intell. Syst. Technol. 11(5), 1–24 (2020)

    Article  Google Scholar 

  7. Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., Garofalakis, M.: Complex event recognition in the big data era: a survey. VLDB J. 29, 313–352 (2020)

    Article  Google Scholar 

  8. Apache Flink Project. https://flink.apache.org/. Accessed 15 July 2023

  9. Spark Streaming. https://spark.apache.org/streaming/. Accessed 15 July 2023

  10. Apache Storm. https://storm.apache.org/. Accessed 15 July 2023

  11. Teroso-Saenz, F., Valdes-Vela, M., den Breejen, E., Hanckmann, P., Dekker, R., Skarmeta-Gomez, A.F.: CEP-traj: an event-based solution to process trajectory data. Inf. Syst. 52, 34–54 (2015)

    Article  Google Scholar 

  12. Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., Theodoridis, Y.: Online event recognition from moving vessel trajectories. GeoInformatica 21(2), 389–427 (2017)

    Article  Google Scholar 

  13. Ntoulias, E., Alevizos, E., Artikis, A., Akasiadis, C., Koumparos, A.: Online fleet monitoring with scalable event recognition and forecasting. GeoInformatica 26, 613–644 (2022)

    Article  Google Scholar 

  14. Khazael, B., Asl, M.V., Malazi, H.T.: Geospatial complex event processing in smart city applications. Simul. Model. Pract. Theory 122, 102675 (2023)

    Article  Google Scholar 

  15. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over event streams. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD ’08), pp. 147–160 (2008)

    Google Scholar 

  16. Zhang, H., Diao, Y., Immerman, N.: On complexity and optimization of expensive queries in complex event processing. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD’14), pp. 217–228 (2014)

    Google Scholar 

  17. Demers, A.J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.M.: Cayuga: a general-purpose event monitoring system. In: 3rd Biennial Conference on Innovative Data Systems Research (CIDR) (2007)

    Google Scholar 

  18. Siddhi CEP. https://github.com/wso2/siddhi. Accessed 18 July 2023

  19. Esper. https://www.espertech.com/esper. Accessed 18 July 2023

  20. FlinkCEP. https://nightlies.apache.org/flink/flink-docs-master/docs/libs/cep. Accessed 19 July 2023

  21. Artikis, A., Sergot, M., Paliouras, G.: An event calculus for event recognition. IEEE Trans. Knowl. Data Eng. 27(4), 895–908 (2014)

    Article  Google Scholar 

  22. Dousson, C., Maigat, P.L.: Chronicle recognition improvement using temporal focusing and hierarchization. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence (IJCAI’07), pp. 324–329 (2007)

    Google Scholar 

  23. Mei, Y., Madden, S.: ZStream: a cost-based query processor for adaptively detecting composite events. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data (SIGMOD), pp. 193–206 (2009)

    Google Scholar 

  24. Flink Pattern Recognition. https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/dev/table/sql/queries/match_recognize/. Accessed 20 July 2023

  25. ISO/IEC TR 19075–5:2021, Information technology - Guidance for the use of data-base language SQL. https://www.iso.org/standard/78936.html. Accessed 20 Jun 2023

  26. Huang, X., et al.: Grab-Posisi: an extensive real-life GPS trajectory dataset in Southeast Asia. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Prediction of Human Mobility (PredictGIS’19), pp. 1–10 (2019)

    Google Scholar 

  27. Shaikh, S.A., Kitagawa, H., Matono, A., Kim, K.S.: TStream: a framework for real-time and scalable trajectory stream processing and analysis. In: Proceedings of the 30th International Conference on Advances in Geographic Information Systems (SIGSPATIAL’22), pp. 1–4 (2022)

    Google Scholar 

  28. Shaikh, S.A., Mariam, K., Kitagawa, H., Kim, K.S.: GeoFlink: a distributed and scalable framework for the real-time processing of spatial streams. In: Proceeding of the 29th ACM International Conference on Information and Knowledge Management (CIKM), pp. 3149–3156 (2020)

    Google Scholar 

  29. Shaikh, S.A., Kitagawa, H., Matono, A., Mariam, K., Kim, K.S.: GeoFlink: an efficient and scalable spatial data stream management system. IEEE Access 10, 24909–24935 (2022)

    Article  Google Scholar 

Download references

Acknowledgement

This paper is based on results obtained from “Research and Development Project of the Enhanced Infrastructures for Post-5G Information and Communication Systems” (JPNP20017) commissioned by NEDO, JPNP14004 commissioned by NEDO, JST CREST Grant Number JPMJCR22M2, AMED Grant Number JP21zf0127005, and JSPS KAKENHI Grant Numbers JP22H03694 and JP23H03399.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Trisminingsih .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 3. TraPM Functions for Spatial Pattern Matching

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trisminingsih, R., Shaikh, S.A., Amagasa, T., Kitagawa, H., Matono, A. (2023). TraPM: A Framework for Online Pattern Matching Over Trajectory Streams. In: Delir Haghighi, P., et al. Information Integration and Web Intelligence. iiWAS 2023. Lecture Notes in Computer Science, vol 14416. Springer, Cham. https://doi.org/10.1007/978-3-031-48316-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48316-5_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48315-8

  • Online ISBN: 978-3-031-48316-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics