Abstract
Home care is a particularly important service for elderly people who need assistance with their management of everyday life from both formal and informal caregivers. In Europe 80% of care is provided by family and friends. Therefore, strengthening the home care by informal caregivers is a crucial task and requires smart solutions to stabilize the current situation. INGE smart solution addresses the challenge of determining and predicting accurate and appropriate care levels for the growing population of elderly individuals in need of care. To be able to achieve this goal, information and structured data are needed to support the smart approach of service development effectively. The proposed approach in INGE utilizes assessment ratings from consultancy visits as features to train and test the developed machine learning model. The performance of the developed random forest-based machine learning model is evaluated using various metrics such as accuracy, precision, recall, F1-score, and confusion matrix and compared with real data collected during the INGE project using the INGE app. The proposed approach achieves an 80% accuracy rate in predicting the care level of care dependents based on category ratings. The used dataset for training the model consists of 454 consultancy visits. The trained model shows that ratings of category self-care have the highest impact on care dependent’s care level sorting as it contributes by 27.1%. This study shows the potential of the INGE smart solution in optimizing both home care situation and care level classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
digitale INtegrierte GEsundheits- und Pflegeversorgung mit IT-gestütztem Pflegeberatungsbesuch nach §37.3 SGB XI/ Digital integrated health and home care with IT-supported in-home care consultancy in conformance to §37.3 social security statute book XI - https://www.gewi-institut.de/projekte/inge/.
- 3.
Neues Begutachtungsassessment zur Feststellung der Pflegebed¨urftigkeit/New Assessment Tool for determining dependency on care.
- 4.
Berliner Inventar zur Angehörigenbelastung-Demenz/Berlin Inventory of Caregiver Stress - Dementia.
- 5.
Fast Healthcare Interoperability Resources.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
Exhaustive search over specified parameter values for an estimator.
- 14.
Randomly selecting rows from the dataset allows the selection of some samples multiple times, while excluding some of the samples unselected.
- 15.
References
European commission: communication on the European care strategy (2022). https://www.epsu.org/sites/default/files/event/files/9%20Sept_European%20care%20strategy_EASPD%20webinar.pdf. Accessed 22 June 2023
Mohamed, Y., et al.: How to overcome lack of health record data and privacy obstacles in initial phases of medical data analysis projects. Comput. Inform. 41(1), 233–252 (2022). https://doi.org/10.31577/cai_2022_1_233
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Statistische bundesamt: long-term care (2023). https://www.destatis.de/EN/Themes/Society-Environment/Health/Long-Term-Care/_node.html. Accessed 22 June 2023
Statistische bundesamt: people in need of long-term care (2019). https://www.destatis.de/EN/Themes/Society-Environment/Health/Long-Term-Care/Tables/people-long-term-care.html#fussnote-1-50564. Accessed 22 June 2023
Thomas, P., et al.: Complaints of informal caregivers providing home care for dementia patients: the Pixel study. Int. J. Geriatr. Psychiatry 17(11), 1034–1047 (2002). https://doi.org/10.1002/gps.746
Plöthner, M., et al.: Needs and preferences of informal caregivers regarding outpatient care for the elderly: a systematic literature review. BMC Geriatr. 19(1), 82 (2019). https://doi.org/10.1186/s12877-019-1068-4
Saripalle, R., Runyan, C., Russell, M.: Using HL7 FHIR to achieve interoperability in patient health record. J. Biomed. Inform. 94, 103188 (2019). https://doi.org/10.1016/j.jbi.2019.103188
Gappa, H., et al.: A step forward in supporting home care more effectively. In: DSAI 2022: Proceedings of the 10th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion, pp. 31–36 (2022). https://doi.org/10.1145/3563137.3563159
Wingenfeld, K., Büscher, A., Gansweid, B.: Das neue begutachtungsassessment zur feststellung von pflegebedürftigkeit. Abschlussbericht zur Hauptphase 1, 1–128 (2008)
HL7. (n.d.). HL7 FHIR: fast healthcare interoperability resources. http://hl7.org/fhir/. Accessed 22 June 2023
Schwinger, A., Tsiasioti, C.: Pflegebedürftigkeit in Deutschland. In: Jacobs, K., Kuhlmey, A., Greß, S., Klauber, J., Schwinger, A. (eds.) Pflege-Report 2018, pp. 173–204. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56822-4_16
Schlomann, A., et al.: Berlin inventory of caregiver stress - dementia (BICS-D). Gerontologist 61(5), 173–184 (2021)
Dong, X.L., Rekatsinas, T.: Data Integration and machine learning. In: Proceedings of the 2018 International Conference on Management of Data, pp.1645–1650 (2018). https://doi.org/10.1145/3183713.3197387
Heymans, M.W., Twisk, J.W.R.: Handling missing data in clinical research. J. Clin. Epidemiol. 151, 185–188 (2022)
Verdonck, T., Baesens, B., Óskarsdóttir, M., vanden Broucke, S.: Special issue on feature engineering editorial. Mach. Learn. (2021).https://doi.org/10.1007/s10994-021-06042-2
Ahsan, M., Mahmud, M., Saha, P., Gupta, K., Siddique, Z.: Effect of data scaling methods on machine learning algorithms and model performance. Technologies 9, 52 (2021). https://doi.org/10.3390/technologies9030052
Ray, S.: A quick review of machine learning algorithms. In: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), pp. 35–39 (2019). https://doi.org/10.1109/COMITCon.2019.8862451
Xu, Y., Hong, K., Tsujii, J., Chang, E.I.-C.: Feature engineering combined with machine learning and rule-based methods for structured information extraction from narrative clinical discharge summaries. J. Am. Med. Inform. Assoc. 19, 824–832 (2012). https://doi.org/10.1136/amiajnl-2011-000776
Rogers, J., Gunn, S.: Identifying feature relevance using a random forest. In: Saunders, C., Grobelnik, M., Gunn, S., Shawe-Taylor, J. (eds.) SLSFS 2005. LNCS, vol. 3940, pp. 173–184. Springer, Heidelberg (2006). https://doi.org/10.1007/11752790_12
Regis, R.G.: Hyperparameter tuning of random forests using radial basis function models. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. LNCS, vol. 13810, pp. 309–324 .Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25599-1_23
Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232 (2016). https://doi.org/10.1007/s13748-016-0094-0
Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A., Brown, S.D.: An introduction to decision tree modeling. J. Chemom.Chemom. 18, 275–285 (2004). https://doi.org/10.1002/cem.873
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Heiba, N., Mohamad, Y., Velasco, C.A., Gappa, H., Berlage, T., Geisler, S. (2023). Predicting and Understanding Care Levels of Elderly People with Machine Learning. In: Gao, Q., Zhou, J., Duffy, V.G., Antona, M., Stephanidis, C. (eds) HCI International 2023 – Late Breaking Papers. HCII 2023. Lecture Notes in Computer Science, vol 14055. Springer, Cham. https://doi.org/10.1007/978-3-031-48041-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-48041-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48040-9
Online ISBN: 978-3-031-48041-6
eBook Packages: Computer ScienceComputer Science (R0)