Nothing Special   »   [go: up one dir, main page]

Skip to main content

Predicting and Understanding Care Levels of Elderly People with Machine Learning

A Random Forest Classifier Integrated with E-Health App and FHIR-Based Data Modeling

  • Conference paper
  • First Online:
HCI International 2023 – Late Breaking Papers (HCII 2023)

Abstract

Home care is a particularly important service for elderly people who need assistance with their management of everyday life from both formal and informal caregivers. In Europe 80% of care is provided by family and friends. Therefore, strengthening the home care by informal caregivers is a crucial task and requires smart solutions to stabilize the current situation. INGE smart solution addresses the challenge of determining and predicting accurate and appropriate care levels for the growing population of elderly individuals in need of care. To be able to achieve this goal, information and structured data are needed to support the smart approach of service development effectively. The proposed approach in INGE utilizes assessment ratings from consultancy visits as features to train and test the developed machine learning model. The performance of the developed random forest-based machine learning model is evaluated using various metrics such as accuracy, precision, recall, F1-score, and confusion matrix and compared with real data collected during the INGE project using the INGE app. The proposed approach achieves an 80% accuracy rate in predicting the care level of care dependents based on category ratings. The used dataset for training the model consists of 454 consultancy visits. The trained model shows that ratings of category self-care have the highest impact on care dependent’s care level sorting as it contributes by 27.1%. This study shows the potential of the INGE smart solution in optimizing both home care situation and care level classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.gesetze-im-internet.de/sgb_11/__37.html.

  2. 2.

    digitale INtegrierte GEsundheits- und Pflegeversorgung mit IT-gestütztem Pflegeberatungsbesuch nach §37.3 SGB XI/ Digital integrated health and home care with IT-supported in-home care consultancy in conformance to §37.3 social security statute book XI - https://www.gewi-institut.de/projekte/inge/.

  3. 3.

    Neues Begutachtungsassessment zur Feststellung der Pflegebed¨urftigkeit/New Assessment Tool for determining dependency on care.

  4. 4.

    Berliner Inventar zur Angehörigenbelastung-Demenz/Berlin Inventory of Caregiver Stress - Dementia.

  5. 5.

    Fast Healthcare Interoperability Resources.

  6. 6.

    https://hl7.org/fhir/graphql.html.

  7. 7.

    https://cran.r-project.org/web/packages/fhircrackr/index.html.

  8. 8.

    https://engineering.cerner.com/bunsen/0.5.10-SNAPSHOT/.

  9. 9.

    https://github.com/JohannesOehm/FhirExtinguisher.

  10. 10.

    https://www.java.com/en/.

  11. 11.

    https://www.python.org/.

  12. 12.

    https://jupyter.org/.

  13. 13.

    Exhaustive search over specified parameter values for an estimator.

  14. 14.

    Randomly selecting rows from the dataset allows the selection of some samples multiple times, while excluding some of the samples unselected.

  15. 15.

    https://www.md-nordrhein.de/fileadmin/MD-zentraler-Ordner/Downloads/01_Pflegebegutachtung/230123_Pflegeflyer_ENG_01_BF.pdf.

References

  1. European commission: communication on the European care strategy (2022). https://www.epsu.org/sites/default/files/event/files/9%20Sept_European%20care%20strategy_EASPD%20webinar.pdf. Accessed 22 June 2023

  2. Mohamed, Y., et al.: How to overcome lack of health record data and privacy obstacles in initial phases of medical data analysis projects. Comput. Inform. 41(1), 233–252 (2022). https://doi.org/10.31577/cai_2022_1_233

  3. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  4. Statistische bundesamt: long-term care (2023). https://www.destatis.de/EN/Themes/Society-Environment/Health/Long-Term-Care/_node.html. Accessed 22 June 2023

  5. Statistische bundesamt: people in need of long-term care (2019). https://www.destatis.de/EN/Themes/Society-Environment/Health/Long-Term-Care/Tables/people-long-term-care.html#fussnote-1-50564. Accessed 22 June 2023

  6. Thomas, P., et al.: Complaints of informal caregivers providing home care for dementia patients: the Pixel study. Int. J. Geriatr. Psychiatry 17(11), 1034–1047 (2002). https://doi.org/10.1002/gps.746

    Article  Google Scholar 

  7. Plöthner, M., et al.: Needs and preferences of informal caregivers regarding outpatient care for the elderly: a systematic literature review. BMC Geriatr. 19(1), 82 (2019). https://doi.org/10.1186/s12877-019-1068-4

    Article  Google Scholar 

  8. Saripalle, R., Runyan, C., Russell, M.: Using HL7 FHIR to achieve interoperability in patient health record. J. Biomed. Inform. 94, 103188 (2019). https://doi.org/10.1016/j.jbi.2019.103188

    Article  Google Scholar 

  9. Gappa, H., et al.: A step forward in supporting home care more effectively. In: DSAI 2022: Proceedings of the 10th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion, pp. 31–36 (2022). https://doi.org/10.1145/3563137.3563159

  10. Wingenfeld, K., Büscher, A., Gansweid, B.: Das neue begutachtungsassessment zur feststellung von pflegebedürftigkeit. Abschlussbericht zur Hauptphase 1, 1–128 (2008)

    Google Scholar 

  11. HL7. (n.d.). HL7 FHIR: fast healthcare interoperability resources. http://hl7.org/fhir/. Accessed 22 June 2023

  12. Schwinger, A., Tsiasioti, C.: Pflegebedürftigkeit in Deutschland. In: Jacobs, K., Kuhlmey, A., Greß, S., Klauber, J., Schwinger, A. (eds.) Pflege-Report 2018, pp. 173–204. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56822-4_16

    Chapter  Google Scholar 

  13. Schlomann, A., et al.: Berlin inventory of caregiver stress - dementia (BICS-D). Gerontologist 61(5), 173–184 (2021)

    Article  Google Scholar 

  14. Dong, X.L., Rekatsinas, T.: Data Integration and machine learning. In: Proceedings of the 2018 International Conference on Management of Data, pp.1645–1650 (2018). https://doi.org/10.1145/3183713.3197387

  15. Heymans, M.W., Twisk, J.W.R.: Handling missing data in clinical research. J. Clin. Epidemiol. 151, 185–188 (2022)

    Article  Google Scholar 

  16. Verdonck, T., Baesens, B., Óskarsdóttir, M., vanden Broucke, S.: Special issue on feature engineering editorial. Mach. Learn. (2021).https://doi.org/10.1007/s10994-021-06042-2

  17. Ahsan, M., Mahmud, M., Saha, P., Gupta, K., Siddique, Z.: Effect of data scaling methods on machine learning algorithms and model performance. Technologies 9, 52 (2021). https://doi.org/10.3390/technologies9030052

    Article  Google Scholar 

  18. Ray, S.: A quick review of machine learning algorithms. In: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), pp. 35–39 (2019). https://doi.org/10.1109/COMITCon.2019.8862451

  19. Xu, Y., Hong, K., Tsujii, J., Chang, E.I.-C.: Feature engineering combined with machine learning and rule-based methods for structured information extraction from narrative clinical discharge summaries. J. Am. Med. Inform. Assoc. 19, 824–832 (2012). https://doi.org/10.1136/amiajnl-2011-000776

    Article  Google Scholar 

  20. Rogers, J., Gunn, S.: Identifying feature relevance using a random forest. In: Saunders, C., Grobelnik, M., Gunn, S., Shawe-Taylor, J. (eds.) SLSFS 2005. LNCS, vol. 3940, pp. 173–184. Springer, Heidelberg (2006). https://doi.org/10.1007/11752790_12

    Chapter  Google Scholar 

  21. Regis, R.G.: Hyperparameter tuning of random forests using radial basis function models. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. LNCS, vol. 13810, pp. 309–324 .Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25599-1_23

  22. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232 (2016). https://doi.org/10.1007/s13748-016-0094-0

    Article  Google Scholar 

  23. Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A., Brown, S.D.: An introduction to decision tree modeling. J. Chemom.Chemom. 18, 275–285 (2004). https://doi.org/10.1002/cem.873

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naguib Heiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heiba, N., Mohamad, Y., Velasco, C.A., Gappa, H., Berlage, T., Geisler, S. (2023). Predicting and Understanding Care Levels of Elderly People with Machine Learning. In: Gao, Q., Zhou, J., Duffy, V.G., Antona, M., Stephanidis, C. (eds) HCI International 2023 – Late Breaking Papers. HCII 2023. Lecture Notes in Computer Science, vol 14055. Springer, Cham. https://doi.org/10.1007/978-3-031-48041-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48041-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48040-9

  • Online ISBN: 978-3-031-48041-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics