Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparison of Simulated Annealing and Evolution Strategies for Optimising Cyclical Rosters with Uneven Demand and Flexible Trainee Placement

  • Conference paper
  • First Online:
Artificial Intelligence XL (SGAI 2023)

Abstract

Rosters are often used for real-world staff scheduling requirements. Multiple design factors such as demand variability, shift type placement, annual leave requirements, staff well-being and the placement of trainees need to be considered when constructing good rosters. In the present work we propose a metaheuristic-based strategy for designing optimal cyclical rosters that can accommodate uneven demand patterns. A key part of our approach relies on integrating an efficient optimal trainee placement module within the metaheuristic-driven search. Results obtained on a real-life problem proposed by the Port of Aberdeen indicate that by incorporating a demand-informed random rota initialisation procedure, our strategy can generally achieve high-quality end-of-run solutions when using relatively simple base solvers like simulated annealing (SA) and evolution strategies (ES). While ES converge faster, SA outperforms quality-wise, with both approaches being able to improve the man-made baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As we are operating on cyclical rotas, \(x_0=x_N\) and \(x_{N+1}=x_1\).

  2. 2.

    Apart from the best penalties for ES 200gen, \(\lambda =100\).

References

  1. Fyvie, M., McCall, J.A.W., Christie, L.A., Brown-lee, A.E.: Explaining a staff rostering genetic algorithm using sensitivity analysis and trajectory analysis. In: Genetic and Evolutionary Computation Conference Companion (GECCO 2023 Companion), 15–19 July 2023, Lisbon, Portugal (2023)

    Google Scholar 

  2. Burke, E.K., Petrovic, S.: Recent research directions in automated timetabling. Eur. J. Oper. Res. 140(2), 266–280 (2002)

    Article  MATH  Google Scholar 

  3. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: a review of applications, methods and models. Eur. J. Oper. Res. 153(1), 3–27 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Petrovic, S., Burke, E.K.: University timetabling. (2004)

    Google Scholar 

  5. Qu, R., Burke, E.K., McCollum, B., Merlot, L.T., Lee, S.Y.: A survey of search methodologies and automated system development for examination timetabling. J. Sched. 12, 55–89 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kwan, R.S., Wren, A., Kwan, A.S.: Hybrid genetic algorithms for scheduling bus and train drivers. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), vol. 1, pp. 285–292. IEEE (2000)

    Google Scholar 

  7. Ribeiro, C.C.: Sports scheduling: problems and applications. Int. Trans. Oper. Res. 19(1–2), 201–226 (2012)

    Article  MATH  Google Scholar 

  8. Li, Y., Kozan, E.: Rostering ambulance services. In: Industrial engineering and management society, pp. 795–801 (2009)

    Google Scholar 

  9. Taylor, P.E., Huxley, S.J.: A break from tradition for the San Francisco police: patrol officer scheduling using an optimization-based decision support system. Interfaces 19(1), 4–24 (1989)

    Article  Google Scholar 

  10. Arabeyre, J., Fearnley, J., Steiger, F., Teather, W.: The airline crew scheduling problem: a survey. Transp. Sci. 3(2), 140–163 (1969)

    Article  Google Scholar 

  11. Maenhout, B., Vanhoucke, M.: The impact of incorporating nurse-specific characteristics in a cyclical scheduling approach. J. Oper. Res. Soc. 60, 1683–1698 (2009)

    Article  Google Scholar 

  12. Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: tutorial, review, and research prospects. Manuf. Serv. Oper. Manage. 5(2), 79–141 (2003)

    Article  Google Scholar 

  13. Burke, E., De Causmaecker, P., Vanden Berghe, G.: A hybrid Tabu search algorithm for the nurse rostering problem. In: McKay, B., Yao, X., Newton, C.S., Kim, J.-H., Furuhashi, T. (eds.) SEAL 1998. LNCS (LNAI), vol. 1585, pp. 187–194. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48873-1_25

    Chapter  Google Scholar 

  14. Maenhout, B., Vanhoucke, M.: A hybrid scatter search heuristic for personalized crew rostering in the airline industry. Eur. J. Oper. Res. 206(1), 155–167 (2010)

    Article  MATH  Google Scholar 

  15. Parr, D., Thompson, J.M.: Solving the multi-objective nurse scheduling problem with a weighted cost function. Ann. Oper. Res. 155(1), 279 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gutjahr, W.J., Rauner, M.S.: An ACO algorithm for a dynamic regional nurse-scheduling problem in Austria. Comput. Oper. Res. 34(3), 642–666 (2007)

    Article  MATH  Google Scholar 

  17. Ainslie, R., McCall, J., Shakya, S., Owusu, G.: Tactical plan optimisation for large multi-skilled workforces using a bi-level model. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)

    Google Scholar 

  18. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach (2003)

    Google Scholar 

  19. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Beyer, H.G., Schwefel, H.P.: Evolution strategies-a comprehensive introduction. Nat. Comput. 1, 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the support of staff members at the Port of Aberdeen that have kindly contributed to this research by providing the historical pilot roster pattern, demand data and feedback that informed the problem formalisation.

This work was supported by the Port of Aberdeen and InnovateUK through a Knowledge Transfer Partnership project (KTP reference number 12046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Collins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Collins, J., Zăvoianu, AC., McCall, J.A.W. (2023). Comparison of Simulated Annealing and Evolution Strategies for Optimising Cyclical Rosters with Uneven Demand and Flexible Trainee Placement. In: Bramer, M., Stahl, F. (eds) Artificial Intelligence XL. SGAI 2023. Lecture Notes in Computer Science(), vol 14381. Springer, Cham. https://doi.org/10.1007/978-3-031-47994-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47994-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47993-9

  • Online ISBN: 978-3-031-47994-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics