Nothing Special   »   [go: up one dir, main page]

Skip to main content

Robust Animal Tracking and Stereotypical Behavior Detection Under Real Environment Using Temporal Averaging Background Subtraction

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 823))

Included in the following conference series:

  • 249 Accesses

Abstract

In ethology research, there have been growing interests in using machine learning method to detect animals and analyze their behaviors, especially from video data. However, behavior analysis is still challenging in the outdoor environment because of the dynamic background and sudden illumination changes. Instead of the previous laboratory setting, we aimed to perform animal behavior analysis outdoors. Specifically, our target of detection and behavior analysis is a polar bear captured by a security camera in a zoo. We focus on analyzing stereotypical behavior, which is critical for understanding the psychological stress of animals. For detection and analysis, we proposed a method that includes background extraction, object detection, and repeating pattern detection for stereotypical behavior detection based on the compression ratio of the detected bear’s location sequences under serialization. Our experimental result shows our method could provide accurate detection (98.3%AP50) and behavior recognition (Accuracy 90.6%) while maintaining high robustness to various noises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). arxiv:1409.0473

  2. Bains, R.S., Wells, S., Sillito, R.R., Armstrong, J.D., Cater, H.L., Banks, G., Nolan, P.M.: Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools. J. Neurosci. Methods 300, 37–47 (2018)

    Google Scholar 

  3. Broom, D.M.: Behaviour and welfare in relation to pathology. Appl. Anim. Behav. Sci. 97, 73–83 (2006)

    Google Scholar 

  4. Burghardt, T., Ćalić, J.: Analysing animal behaviour in wildlife videos using face detection and tracking. IEE Proc.-Vis. Image Signal Process. 153(3), 305–312 (2006)

    Google Scholar 

  5. Carlstead, K.: Determining the causes of stereotypic behaviors in zoo carnivores: toward appropriate enrichment strategies. In: Second Nature: environmental Enrichment for Captive Animals, pp. 172–183 (1998)

    Google Scholar 

  6. Carlstead, K.J:. Husbandry of the fennec fox: Fennecus zerda: environmental conditions influencing stereotypic behaviour. In: International Zoo Yearbook (1991)

    Google Scholar 

  7. Chen, H., He, Z., Shi, B., Zhong, T.: Research on recognition method of electrical components based on yolo v3. IEEE Access 7, 157818–157829 (2019)

    Article  Google Scholar 

  8. Clubb, R., Mason, G.: A Review of the Welfare of Zoo Elephants in Europe. RSPCA Horsham, UK (2002)

    Google Scholar 

  9. Clubb, R., Mason, G.J.: Natural behavioural biology as a risk factor in carnivore welfare: how analysing species differences could help zoos improve enclosures. Appl. Anim. Behav. Sci. 102(3–4), 303–328 (2007)

    Google Scholar 

  10. Fernandes, J.N., Hemsworth, P.H., Coleman, G.J., Tilbrook, A.J.: Costs and benefits of improving farm animal welfare. Agriculture 11(2), 104 (2021)

    Google Scholar 

  11. Girshick, R.: Fast R-CNN (2015)

    Google Scholar 

  12. Graves, A., Mohamed, A.-R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649. IEEE (2013)

    Google Scholar 

  13. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN (2017)

    Google Scholar 

  14. Huang, R., Pedoeem, J., Chen, C.: Yolo-lite: a real-time object detection algorithm optimized for non-GPU computers. In: Proceedings—2018 IEEE International Conference on Big Data, Big Data 2018, pp. 2503–2510 (2019)

    Google Scholar 

  15. Jensen, P.: Diurnal rhythm of bar-biting in relation to other behaviour in pregnant sows. Appl. Anim. Behav. Sci. 21(4), 337–346 (1988)

    Article  Google Scholar 

  16. Jocher, G., Stoken, A., Borovec, J., Changyu, L., Hogan, A., Chaurasia, A., Diaconu, L., Ingham, F., Colmagro, A., Ye, H., Poznanski, J.: ultralytics/yolov5: v4. 0-nn. SiLU () activations, weights & biases logging, pytorch hub integration. Zenodo (2021)

    Google Scholar 

  17. Kobayashi, K., Matsushita, S., Shimizu, N., Masuko, S., Yamamoto, M., Murata, T.: Automated detection of mouse scratching behaviour using convolutional recurrent neural network. Sci. Rep. 11(1), 1–10 (2021)

    Article  Google Scholar 

  18. Krause, A., Neitz, S., Mägert, H.-J., Schulz, A., Forssmann, W.-G., Schulz-Knappe, P., Adermann, K.: Leap-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 480(2–3), 147–150 (2000)

    Article  Google Scholar 

  19. Lawrence, A.B., Terlouw, E.M.C.: A review of behavioral factors involved in the development and continued performance of stereotypic behaviors in pigs. J. Anim. Sci. 71(10), 2815–2825 (1993)

    Google Scholar 

  20. Mason, G., Clubb, R., Latham, N., Vickery, S.: Why and how should we use environmental enrichment to tackle stereotypic behaviour? Appl. Anim. Behav. Sci. 102(3–4), 163–188 (2007)

    Article  Google Scholar 

  21. Mason, G.J.: Species differences in responses to captivity: stress, welfare and the comparative method. Trends Ecol. Evol. 25, 713–721 (2010)

    Google Scholar 

  22. Mathis, A., Mamidanna, P., Cury, K.M., Abe, T., Murthy, V.N., Mathis, M.W., Bethge, M.: Deeplabcut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21(9), 1281–1289 (2018)

    Google Scholar 

  23. Meyer-Holzapfel, M.: Abnormal behavior in zoo animals. In: Abnormal Behavior in Animals, pp. 476–503 (1968)

    Google Scholar 

  24. Molchanov, V.V., Vishnyakov, B.V., Vizilter, Y.V., Vishnyakova, O.V., Knyaz, V.A.: Pedestrian detection in video surveillance using fully convolutional yolo neural network. 10334, 193–199 (2017)

    Google Scholar 

  25. Nasirahmadi, A., Edwards, S.A., Sturm, B.: Implementation of machine vision for detecting behaviour of cattle and pigs. Livestock Sci. 202, 25–38 (2017)

    Google Scholar 

  26. Nevison, C.M., Hurst, J.L., Barnard, C.J.: Why do male ICR (cd-1) mice perform bar-related (stereotypic) behaviour? Behav. Proc. 47(2), 95–111 (1999)

    Article  Google Scholar 

  27. Pal, A., Schaefer, G., Celebi, M.E.: Robust codebook-based video background subtraction. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1146–1149. IEEE (2010)

    Google Scholar 

  28. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  29. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2015)

    Google Scholar 

  30. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  31. Rowcliffe, J.M., Kays, R., Kranstauber, B., Carbone, C., Jansen, P.A.: Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5(11), 1170–1179 (2014)

    Google Scholar 

  32. Sakamoto, N., Kobayashi, K., Yamamoto, T., Masuko, S., Yamamoto, M., Murata, T.: Automated grooming detection of mouse by three-dimensional convolutional neural network. Front. Behav. Neurosci. 16 (2022)

    Google Scholar 

  33. Sherwen, S.L., Hemsworth, P.H.: The visitor effect on zoo animals: implications and opportunities for zoo animal welfare. Animals 9(6), 366 (2019)

    Google Scholar 

  34. Shyne, A.: Meta-analytic review of the effects of enrichment on stereotypic behavior in zoo mammals. Zoo Biol.: Publ. Aff. Am. Zoo Aquar. Assoc. 25(4), 317–337 (2006)

    Article  Google Scholar 

  35. Stern, U., He, R., Yang, C.-H.: Analyzing animal behavior via classifying each video frame using convolutional neural networks. Sci. Rep. 5(1), 1–13 (2015)

    Article  Google Scholar 

  36. Sturman, O., von Ziegler, L., Schläppi, C., Akyol, F., Privitera, M., Slominski, D., Grimm, C., Thieren, L., Zerbi, V., Grewe, B., et al.: Deep learning-based behavioral analysis reaches human accuracy and is capable of outperforming commercial solutions. Neuropsychopharmacology 45(11), 1942–1952 (2020)

    Article  Google Scholar 

  37. Sun, G., Lyu, C., Cai, R., Yu, C., Sun, H., Schriver, K.E., Gao, L., Li, X.: Deepbhvtracking: a novel behavior tracking method for laboratory animals based on deep learning. Front. Behav. Neurosci. 15 (2021)

    Google Scholar 

  38. Wang, Y., Zheng, J.: Real-time face detection based on yolo. In: 1st IEEE International Conference on Knowledge Innovation and Invention, ICKII 2018, pp. 221–224 (2018)

    Google Scholar 

  39. Yin, Y., Li, H., Fu, W.: Faster-yolo: an accurate and faster object detection method. Dig. Signal Process. 102, 102756 (2020)

    Google Scholar 

  40. Zhi-Yu Yin, L., Li, S.-S.C., Sun, Q., Ma, Z.-L., Xiao-Ping, G.: Antinociceptive effects of dehydrocorydaline in mouse models of inflammatory pain involve the opioid receptor and inflammatory cytokines. Sci. Rep. 6(1), 1–9 (2016)

    Google Scholar 

  41. Zhang, Z., Lu, X., Cao, G., Yang, Y., Jiao, L., Liu, F.: Vit-yolo: transformer-based yolo for object detection (2021)

    Google Scholar 

  42. Zhou, F., Zhao, H., Nie, Z.: Safety helmet detection based on yolov5. In: 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), pp. 6–11. IEEE (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS K A K E N H I Grant Number 22H03637 and the authors wish to thank Sapporo Maruyama zoo for providing the animal data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruqin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, R., Noguchi, W., Zhang, E., Osada, K., Yamamoto, M. (2024). Robust Animal Tracking and Stereotypical Behavior Detection Under Real Environment Using Temporal Averaging Background Subtraction. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-031-47724-9_57

Download citation

Publish with us

Policies and ethics