Nothing Special   »   [go: up one dir, main page]

Skip to main content

Background and Technologies

  • Chapter
  • First Online:
Synthetic Data

Abstract

This chapter briefly reviews the technological background behind digitalization and digital transformation, ranging over Artificial Intelligence (AI), Machine Learning (ML, as a central sub-category of AI), Computer Vision (as an application of ML), Mixed Reality (MR), Cyber-Physical Systems, the Internet of Things (IoT), Cloud Computing, Big Data Analytics, and the Digital Twin paradigm. This chapter discusses thee technologies’ usage ranging from smart software solutions that can efficiently process digital information and automate its conversion into useful insights, to predictive and immersive tools that allow robots and humans to work together in continuous cooperation and synchronization, realizing the vision of the industrial metaverse. This chapter attempts to answer the following questions: What are prominent digitalization and smart technologies about? What problems and use cases do they address? How do they work? And how do they shape the industry of the future?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://unity.com/.

  2. 2.

    https://www.blender.org/.

  3. 3.

    https://www.nvidia.com/en-us/omniverse/.

  4. 4.

    https://www.substance3d.com/.

  5. 5.

    Massachusetts Institute of Technology.

  6. 6.

    Location-based social website for mobile devices (http://Foursquare.com).

  7. 7.

    Location-aware mobile application allowing users to view their contacts geographic locations (www.google.com/latitude). Note that Google Latitude is being recently retired, transforming most of its services to Google+.

  8. 8.

    http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/; https://www.w3.org/TR/vocab-ssn-ext/

References

  1. R. Abboud, J. Tekli, MUSE Prototype for Music Sentiment Expression. IEEE International Conference on Cognitive Computing (ICCC’18), part of the IEEE World Congress on Services 2018, 2018. pp. 106–109

    Google Scholar 

  2. R. Abboud, J. Tekli, Integration of non-parametric fuzzy classification with an evolutionary-developmental framework to perform music sentiment-based analysis and composition. Soft Comput. 24(13), 9875–9925 (2019)

    Article  Google Scholar 

  3. E. Ackerman, E. Guizzo, Wizards of ROS: Willow Garage and the Making of the Robot Operating System. IEEE Spectrum: Technology, Engineering, and Science News, 2017. https://spectrum.ieee.org/wizards-of-ros-willow-garage-and-the-making-of-the-robot-operating-system

  4. R. Al Sobbahi, J. Tekli, Comparing deep learning models for low-light natural scene image enhancement and their impact on object detection and classification: overview, empirical evaluation, and challenges. Signal Process. Image Commun. 109, 116848 (2022)

    Article  Google Scholar 

  5. S.R. Al, J. Tekli, Low-light homomorphic filtering network for integrating image enhancement and classification. Signal Process. Image Commun. 100, 116527 (2022)

    Article  Google Scholar 

  6. E. Alpaydin, Introduction to Machine Learning, 4th edn. (MIT, 2020) pp. xix, 1–3, 13–18, ISBN 978-0262043793

    Google Scholar 

  7. R. Armbrecht et al., Knowledge management in research and development. Res. Technol. Manag. 44(4), 28–48(21) (2001)

    Article  Google Scholar 

  8. J. Attieh, J. Tekli, Supervised term-category feature weighting for improved text classification. Knowl. Based Syst. 261, 110215 (2023)

    Article  Google Scholar 

  9. R. Azuma, A survey of augmented reality. Presence Teleop. Virt. 6(4), 355–385 (1997)

    Article  Google Scholar 

  10. R. Azuma et al., Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21, 1–27 (2001)

    Article  Google Scholar 

  11. H. Bae et al., Fast and scalable structure-from-motion based localization for high-precision mobile augmented reality systems. J. Mob. User Exp. 5, 4 (2016)

    Article  Google Scholar 

  12. Y. Bao et al., Massive Sensor Data Management Framework in Cloud Manufacturing Based on Hadoop. EEE International Conference on Industrial Informatics (INDIN’12), 2012. pp. 397–401

    Google Scholar 

  13. L. Barghout, Visual taxometric approach to image segmentation using fuzzy-spatial taxon cut yields contextually relevant regions, in Information Processing and Management of Uncertainty in Knowledge-Based Systems, (Springer, 2014)

    Google Scholar 

  14. D. Batista et al., Semi-Supervised Bootstrapping of Relationship Extractors with Distributional Semantics. Conference on Empirical Methods in Natural Language Processing (EMNLP), 2015. pp. 499–504

    Google Scholar 

  15. M. Baziz et al., A Concept-Based Approach for Indexing Documents in IR. INFORSID 2005, 2005. pp. 489–504, Grenoble, France

    Google Scholar 

  16. B. Becerik-Gerber et al., Assessment of target types and layouts in 3D laser scalllling for registration accuracy. Autom. Constr. 20(5), 649–058 (2011)

    Article  Google Scholar 

  17. W. Bellamy, Boeing CEO Talks ‘Digital Twin’ Era of Aviation (Avionics International, 2018) https://www.aviationtoday.com/2018/09/14/boeing-ceo-talks-digital-twin-era-aviation/

    Google Scholar 

  18. L. Berg, J. Vance, Industry use of virtual reality in product design and manufacturing: a survey. Virtual Reality 21, 1–17 (2017)

    Article  Google Scholar 

  19. J.J. Berman, Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information. Springer, eBook. ISBN: 9780124047242, 2013

    Google Scholar 

  20. M. Billinghurst et al., A survey of augmented reality. Found. Trends Human Comput. Interact. 8, 73–272 (2015)

    Article  Google Scholar 

  21. BMW Group, Innovative Human-robot cooperation in BMW group production. Press release (2013) https://www.press.bmwgroup.com/global/article/detail/T0209722EN/innovative-human-robot-cooperation-in-bmw-group-production?language=en

  22. D. Bowman, R. McMahan, Virtual reality: how much immersion is enough? Comput. Graphics Forum 40(7), 36 (2007)

    Google Scholar 

  23. D. Bowman et al., 3D user interfaces: new directions and perspectives. IEEE Comput. Graph Appl. 28(6), 20 (2008)

    Article  Google Scholar 

  24. S. Brewster, A. Gies, The Best VR Headset. New York Times, 2023. https://www.nytimes.com/wirecutter/reviews/best-standalone-vr-headset/

  25. F. Bruno et al., Visualization of industrial engineering data in augmented reality. J. Vis. 9(3), 319–329 (2006)

    Article  Google Scholar 

  26. L. Cardoso et al., A survey of industrial augmented reality. Comput. Ind. Eng. 139, 106159 (2020)

    Article  Google Scholar 

  27. J. Carew, Reinforcement Learning. TechTarget. Accessed June 2023. https://www.techtarget.com/searchenterpriseai/definition/reinforcement-learning#:~:text=Reinforcement%20learning%20is%20a%20machine,learn%20through%20trial%20and%20error

  28. M.N. Center, Mercedes-Benz and Microsoft Collaborate to Boost Efficiency, Resilience and Sustainability in Car Production. news.microsoft.com, 2022. https://newsmicrosoftcom/2022/10/12/mercedes-benz-and-microsoft-collaborate-to-boost-efficiency-resilience-and-sustainability-in-car-production/

  29. U.D.T.I. Center, Disruptive Civil Technologies: Six Technologies With Potential Impacts on US Interests Out to 2025. 2008. https://apps.dtic.mil/sti/citations/ADA519715

  30. M. Chen et al., Big data: a survey. Mob. Netw. Appl. 19(2), 1–39 (2014)

    Article  Google Scholar 

  31. C. Cruz-Neira et al., Surround-screen projection-based virtual reality: the design and implementation of the CAVE. Proceedings of the 20th annual conference on Computer graphics and interactive techniques, 1993. pp 135–142

    Google Scholar 

  32. Y. Cuia et al., Manufacturing Big Data ecosystem: a systematic literature review. Robot. Comput. Integr. Manuf. 62, 101861 (2020)

    Article  Google Scholar 

  33. M. Dasso, T. Constant, M. Fournier, The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges. Ann. For. Sci. 68(5), 959–974 (2011)

    Article  Google Scholar 

  34. R. Davies, Machine Vision: Theory, Algorithms, Practicalities. Morgan Kaufmann, 2005. ISBN 978-0-12-206093-9

    Google Scholar 

  35. M. Dean, G. Schreiber, OWL Web Ontology Language Reference. W3C Recommendation, http://www.w3.org/TR/owl-ref/. 2004

  36. S. Decker et al., The semantic web: the roles of XML and RDF. IEEE Internet Comput. 4(5), 63–74 (2000)

    Article  Google Scholar 

  37. J. DelPretro, D. Rus, Distributed Robot Garden. MIT-Computer Science & Artificial Intelligence Laboratory, 2020. https://www.csail.mit.edu/research/distributed-robot-garden

  38. B. El Asmar et al., AWARE: A Situational Awareness Framework for Facilitating Adaptive Behavior of Autonomous Vehicles in Manufacturing. International Semantic Web Conference (ISWC’20), 2020. (2): 651–666

    Google Scholar 

  39. A. Eriksson et al., Virtual Factory Layouts from 3D Laser Scanning – A Novel Framework to Define Solid Model Requirements. 7th CIRP Conference on Assembly Technologies and Systems 76:36–41

    Google Scholar 

  40. M. Evans, From Nepal to Idaho, Inter Breaks Groung in Virtual Reality (Idaho National Laboratory, 2019) https://inl.gov/article/from-nepal-to-idaho-intern-breaks-ground-in-virtual-reality/

    Google Scholar 

  41. Y. Fan et al., A digital-twin visualized architecture for flexible manufacturing system. J. Manuf. Syst. 60, 176–201 (2021)

    Article  Google Scholar 

  42. M. Fares et al., Unsupervised word-level affect analysis and propagation in a lexical knowledge graph. Knowl.-Based Syst. 165, 432–459 (2019) Elsevier

    Article  Google Scholar 

  43. M. Fares et al., Difficulties and Improvements to Graph-based Lexical Sentiment Analysis using LISA. IEEE International Conference on Cognitive Computing (ICCC’19), 2019. pp. 28–35

    Google Scholar 

  44. M. Farish, A Collaborative Approach to Automation. Automotive Manufactoring Solutions (AMS) (2020) https://www.automotivemanufacturingsolutions.com/technology/a-collaborative-approach-to-automation/41400.article

  45. C.H. Feng et al., UPS: unified protocol stack for emerging wireless networks. Ad Hoc Networks Special Issue on Cross-layer Design in Ad Hoc and Sensor Networks 11, 687–700 (2013) Elsevier

    Google Scholar 

  46. S. Ferilli et al., Towards Sentiment and Emotion Analysis of User Feedback for Digital Libraries. Italian Research Conference on Digital Libraries (IRCDL’16), 2016. pp. 137–149

    Google Scholar 

  47. U.N.S Foundation, Cyber-Physical Systems (CPS). 2010. https://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm

  48. P. Fraga-Lamas et al., A Review on Industrial Augmented Reality Systems for the Industry 4.0 Shipyard. IEEE Access, 2018. 13358–13375

    Google Scholar 

  49. V. Francisco et al., Ontological reasoning for improving the treatment of emotions in text. Knowl. Inf. Syst. 25(3), 421–443 (2010)

    Article  Google Scholar 

  50. J. Friedrich, All BMW Group Vehicle Plants to be Digitalised Using 3D Laser Scanning by Early 2023. BMW Group Press Club, 2022. https://www.press.bmwgroup.com/global/article/detail/T0400833EN/all-bmw-group-vehicle-plants-to-be-digitalised-using-3d-laser-scanning-by-early-2023?language=en

  51. R. Garcia-Castro, A. Gomez-Perez, Interoperability results for semantic web technologies using OWL as the interchange language. J. Web Semant. 8(4), 278–291 (2010)

    Article  Google Scholar 

  52. M.F. Gavilanes et al., Creating emoji lexica from unsupervised sentiment analysis of their descriptions. Expert Syst. Appl. 103, 74–91 (2018)

    Article  Google Scholar 

  53. M. Ghiassi, S. Lee, A domain transferable lexicon set for twitter sentiment analysis using a supervised machine learning approach. Expert Syst. Appl. 106, 197–216 (2018)

    Article  Google Scholar 

  54. E. Glaessgen, D. Stargel, The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2012. https://ntrs.nasa.gov/citations/20120008178

  55. A. Glassner, Principles of Digital Image Synthesis, 2nd edn. (Kaufmann, San Francisco, 2004) ISBN 978-1-55860-276-2

    Google Scholar 

  56. M. Gokalp et al., Big-Data Data Analytics Architecture for Businesses: A Comprehensive Review on New Open-Source Big-Data Tools (Cambridge Service Alliance, 2017), pp. 1–35

    Google Scholar 

  57. Y. Goldberg, A primer on neural network models for natural language processing. J. Artif. Intell. Res. 57, 345–420 (2016)

    Article  MathSciNet  Google Scholar 

  58. U. Govindarajan et al., Immersive technology for human-centric cyberphysical systems in complex manufacturing processes: a comprehensive overview of the global patent profile using collective intelligence. Complexity 2018, 17 (2018)

    Article  Google Scholar 

  59. J. Gubbi et al., Internet of Things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  60. S. Guha et al., Clustering Data Streams. Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS), 2000. pp. 359–366

    Google Scholar 

  61. P. Guillemin, P. Friess, The Internet of Things: Strategic Research Agenda. CERP-IoT – Cluster of European Research Projects on the Internet of Things, 2010. Vision and Challenges for Realizing the Internet of Things, Ch 3, pp. 41–42

    Google Scholar 

  62. A. Hajjar, J. Tekli, Unsupervised Extractive Text Summarization Using Frequency-Based Sentence Clustering. European Conference on Advances in Databases and Information Systems (ADBIS’22), 2022. pp. 245–255

    Google Scholar 

  63. N. Hamid et al., Virtual reality applications in manufacturing system. Sci. Inf. Conf., 1034–1037 (2014)

    Google Scholar 

  64. H. Harb, H. Noueihed, Digital Twin’s Promising Future in Digital Transformation (JOUN Technologies, 2020) 15 p

    Google Scholar 

  65. I. Hashem et al., The rise of “big data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)

    Article  Google Scholar 

  66. K. Hille, NASA Turns to AI to Design Mission Hardware. NASA Space Tech, 2023. https://www.nasa.gov/feature/goddard/2023/nasa-turns-to-ai-to-design-mission-hardware Accessed March 2023

  67. J. Hoffart et al., YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61 (2013)

    Article  MathSciNet  Google Scholar 

  68. S. Hussain, M. Haris, A K-means based co-clustering (kCC) algorithm for sparse, high-dimensional data. Expert Syst. Appl. 118, 20–34 (2019)

    Article  Google Scholar 

  69. K. Iwata et al., Virtual manufacturing systems as advanced information infrastructure for integrated manufacturing resources and activities. CIRP Ann. 46, 335–338 (1997)

    Article  Google Scholar 

  70. A. Junyi et al., SpeechT5: Unified-Modal Encoder-Decoder Pre-training for Spoken Language Processing. Annual Meeting of the Association for Computational Linguistics (ACL), 2022. (1), pp. 5723–5738

    Google Scholar 

  71. H. Kang et al., Smart manufacturing: past research, present findings, and future directions. Int. J. Precis. Eng. Manuf. Green Technol.. 3:(1)111–128

    Google Scholar 

  72. M. Kearns et al., A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Mach. Learn. 49(193–208), 193–208 (2002). https://doi.org/10.1023/A:1017932429737

    Article  Google Scholar 

  73. A. Khajeh-Hosseini et al., Research challenges for Enterprise cloud computing. CoRR abs/1001.3257, 2010

    Google Scholar 

  74. A. Khajeh-Hosseini et al., The cloud adoption toolkit: supporting cloud adoption decisions in the enterprise. Softw. Pract. Exper. 42(4), 447–465 (2012)

    Article  Google Scholar 

  75. D. Khan et al., Factors affecting the design and tracking of ARToolKit markers. Comput. Stand. Interfaces 41, 56–66 (2015)

    Article  Google Scholar 

  76. L. Klein et al., Imaged-based verification of Asbuilt documentation of operational building. Autom. Constr. 21(I), 161–171 (2012)

    Article  Google Scholar 

  77. G. Klyne, J. Carroll, Resource Description Framework (RDF): Concepts and Abstract Syntax. W3C Recommendation REC-rdf-concepts-20040210, 2004. http://www.w3.org/TR/rdf-concepts/

  78. W. Knight, BMW’s Virtual Factory Uses AI to Hone the Assembly Line. Wired, 2021. https://www.wired.com/story/bmw-virtual-factory-ai-hone-assembly-line/

  79. J. Krogstie et al., Integrating semantic web Technology, web services, and workflow modeling: achieving system and business interoperability. Int. J. Enterp. Inf. Syst. 3(1), 22–41 (2007)

    Article  Google Scholar 

  80. K. Kumar et al., A hybrid deep CNN-Cov-19-res-net transfer learning architype for an enhanced brain tumor detection and classification scheme in medical image processing. Biomed. Signal Process. Control 76, 103631 (2022)

    Article  Google Scholar 

  81. J. Lai et al., Semi-supervised feature selection via adaptive structure learning and constrained graph learning. Knowl. Based Syst. 251, 109243 (2022)

    Article  Google Scholar 

  82. S. Laycock, A. Day, A survey of haptic rendering techniques. Comput. Graph. Forum. 26(1), 50 (2007)

    Article  Google Scholar 

  83. Z. Lei et al., Toward a web-based digital twin thermal power plant. IEEE Trans. Industr. Inform. 18(3), 1716–1725 (2022)

    Article  Google Scholar 

  84. J. Leng et al., Digital twin-driven joint optimisation of packing and storage assignment in large-scale automated high-rise warehouse product-service system. Int. J. Comput. Integr. Manuf. 1–18 (2019)

    Google Scholar 

  85. G.N. Library, International classification system of the German National Library (GND). Accessed March 2023. https://portal.dnb.de/opac.htm?method=simpleSearch&cqlMode=true&query=nid%3D4261462-4

  86. E. Lindskog et al., Production system redesign using realistic visualisation. Int. J. Prod. Res., 2016. 55(3): 858–869 (2017)

    Google Scholar 

  87. Z. Liu et al., Joint video object discovery and segmentation by coupled dynamic Markov networks. IEEE Trans. Image Process 27(12), 5840–5853 (2018)

    Article  MathSciNet  Google Scholar 

  88. T. Lopez et al., Adding sense to the internet of things an architecture framework for smart objective systems. Pers. Ubiquit. Comput. 16, 291–308 (2012)

    Article  Google Scholar 

  89. R.N. Loy, N. Padoy, Seeing is believing: increasing intraoperative awareness to scattered radiation in interventional procedures by combining augmented reality, Monte Carlo simulations and wireless dosimeters. Int. J. Comput. Assist. Radiol. Surg. 10, 1181–1191 (2015)

    Article  Google Scholar 

  90. T. Lukoianova, Veracity roadmap: is big data objective, truthful and credible? Adv. Classif. Res. Online 24(1), 4–15 (2014). https://doi.org/10.7152/acro.v24i1.14671

    Article  Google Scholar 

  91. Y. Ma et al., Background augmentation generative adversarial networks (BAGANs): effective data generation based on GAN-augmented 3D synthesizing. Symmetry 10(12), 734 (2018)

    Article  Google Scholar 

  92. J. Marburger et al., Leadership Under Challenge: Information Technology R&D in a Competitive World. An Assessment of the Federal Networking and Information Technology R&D Program. US Defence Technical Information Center, 2007. https://apps.dtic.mil/sti/citations/ADA474709

  93. S. Marschner, Monte Carlo Ray Tracing. Cornell University Computer Science CS4620, 2013

    Google Scholar 

  94. MathWorks, What Is Deep Learning? 3 Things You Need to Know. Accessed June 2023. https://www.mathworks.com/discovery/deep-learning.html#:~:text=Deep%20learning%20is%20a%20machine,a%20pedestrian%20from%20a%20lamppost

  95. H. Maziad et al., Preprocessing Techniques for End-to-End Trainable RNN-Based Conversational System. International Conference on Web Engineering (ICWE), 2021. pp. 255–270

    Google Scholar 

  96. S. Mehta et al., Towards Semi-Supervised Learning for Deep Semantic Role Labeling. Conference on Empirical Methods in Natural Language Processing (EMNLP), 2018. pp. 4958–4963

    Google Scholar 

  97. M. Merenda, C. Porcaro, D. Iero, Edge machine learning for AI-enabled IoT devices: a review. Sensors 20(9), 2533 (2020)

    Article  Google Scholar 

  98. G.A. Miller, C. Fellbaum, WordNet then and now. Lang. Resour. Eval. 41(2), 209–214 (2007)

    Article  Google Scholar 

  99. S. Mishra, J. Diesner, Semi-Supervised Named Entity Recognition in Noisy-Text. International Conference on Computational Linguistics (COLING), 2016. pp. 203–212

    Google Scholar 

  100. T. Mitchell, Machine Learning (McGraw Hill. ISBN 0-07-042807-7. OCLC 36417892, New York, 1997)

    Google Scholar 

  101. S. Mitra, T. Acharya, Gesture recognition: a survey. IEEE Trans. Syst. Man Cybern. C 37(3), 311 (2007). https://doi.org/10.1109/TSMCC.2007.893280

    Article  Google Scholar 

  102. W. Mohammed et al., Configuring and visualizing the data resources in a cloud-based data collection framework. International Conference on Engineering, Technology and Innovation (ICE/ITMC'17), 2017. pp. 1201–1208

    Google Scholar 

  103. M. Mohri et al., Foundations of Machine Learning (The MIT Press, 2012) https://mitpress.mit.edu/9780262039406/foundations-of-machine-learning/

    Google Scholar 

  104. T. Morris, Computer Vision and Image Processing (Palgrave Macmillan, 2004) ISBN 978-0-333-99451-1

    Google Scholar 

  105. M. Nagarajan et al., Semantic Interoperability of Web Services – Challenges and Experiences. Proceedings of the Fourth IEEE International Conference on Web Services (ICWS'06), 2006. pp. 373–382

    Google Scholar 

  106. K. Nagorny et al., Big Data analysis in smart manufacturing: a review. Int. J. Commun. Netw. Syst. Sci. 2017(10), 31–58 (2017)

    Google Scholar 

  107. NASA, The Virtual interface Environment Workstation (VIEW). National Aeronautics and Space Administration, 1990. https://www.nasa.gov/ames/spinoff/new_continent_of_ideas/

  108. S. News, Climate Change: Seven Technology Solutions that Could Help Solve Crisis. 2021. https://news.sky.com/story/climate-change-seven-technology-solutions-that-could-help-solve-crisis-12056397

    Google Scholar 

  109. A. Nishihara, Object Recognition in Assembly Assisted by Augmented Reality System Object Recognition in Assembly Assisted by Augmented Reality System. SAI Intelligent Systems Conference (IntelliSys), 2015. https://doi.org/10.1109/IntelliSys.2015.7361172

  110. H. Noueihed et al., Simulating Weather Events on a Real-World Map Using Unity 3D. Proceedings of the International Conference on Smart Cities and Green ICT Systems (SMARTGREENS’22), 2022. pp. 86–93

    Google Scholar 

  111. H. Noueihed et al., Knowledge-based virtual outdoor weather event simulator using Unity 3D. J. Supercomput. 78(8), 10620–10655 (2022)

    Article  Google Scholar 

  112. T. Oates, D. Jensen, The Effects of Training Set Size on Decision Tree Complexity. International Conference on Machine Learning (ICML’97), 1997. pp. 254–262

    Google Scholar 

  113. R. Owen et al., Responsible research and innovation: from science in society to science for society with society. Sci. Public Policy 39(6), 751–760 (2012)

    Article  Google Scholar 

  114. M. Pharr, G. Humphreys, Physically Based Rendering from Theory to Implementation (Elsevier/Morgan Kaufmann, Amsterdam, 2004) ISBN 978-0-12-553180-1

    Google Scholar 

  115. A. Pinker, M. Pruglmeier, Innovations in Logistics. Huss, 2021. 192 p

    Google Scholar 

  116. E. Prudhommeaux, A. Seaborne, SPARQL Query Language for RDF. W3C Recommendation, 2008. http://www.w3.org/TR/rdf-sparql-query/

  117. D. Reinsel et al., Data Age 2025: The Digitization of the World from Edge to Core. https://www.seagate.com/files/www-content/ourstory/trends/files/idc-seagate-dataage-whitepaper.pdf (2018)

  118. P. Resnik, Using information content to evaluate semantic similarity in a taxonomy. Proc. Int. Joint Conf. Artif. Intell. 1, 448–453 (1995)

    Google Scholar 

  119. MIT Technology Review, The Industrial Metaverse – A Game-Changer for Operational Technology. 2023. https://www.technologyreview.com/2022/12/05/1063828/the-industrial-metaverse-a-game-changer-for-operational-technology/

  120. C. Rooney, R. Ruddle, HiReD: A High-Resolution Multi-Window Visualisation Environment for Cluster-Driven Displays. ACM SIGCHI Symposium on Engineering Interactive Computing System (EICS’15), 2015. pp. 2–11

    Google Scholar 

  121. S. Russel, P. Norvig, Artificial Intelligence, A Modern Approach, 3rd, Pearson, 2015. 1164 p

    Google Scholar 

  122. S. Khaitan, J. McCalley, Design techniques and applications of cyberphysical systems: a survey. IEEE Syst. J. 9, 2 (2014)

    Google Scholar 

  123. K. Salameh et al., SVG-to-RDF Image Semantization. 7th International SISAP Conference, 2014. pp. 214–228

    Google Scholar 

  124. K. Salameh et al., Unsupervised knowledge representation of panoramic dental X-ray images using SVG image-and-object clustering. Multimedia Syst. (2023). https://doi.org/10.1007/s00530-023-01099-6

  125. G. Salloum, J. Tekli, Automated and personalized nutrition health assessment, recommendation, and progress evaluation using fuzzy reasoning. Int. J. Human-Comput. Stud. 151, 102610 (2021)

    Article  Google Scholar 

  126. G. Salloum, T. Tekli, Automated and personalized meal plan generation and relevance scoring using a multi-factor adaptation of the transportation problem. Soft Comput. 26(5), 2561–2585 (2022)

    Article  Google Scholar 

  127. C. Sanders, Industrial Metaverse: The Data Driven Future of Industries. Microsoft Industry Blogs, 2023. https://www.microsoft.com/en-us/industry/blog/manufacturing/2023/02/13/industrial-metaverse-the-data-driven-future-of-industries/#:~:text=The%20industrial%20metaverse%20is%20redefining,improvements%20in%20sustainability%20and%20efficiency

  128. Y. Shoham et al., Multi-agent Reinforcement Learning: A Critical Survey. Technical Report, Stanford Universitt, 2003. pp. 1–13

    Google Scholar 

  129. Siemens, What Is the Industrial Metaverse – And Why Should I Care? Siemenscom, 2023. https://www.siemens.com/global/en/company/insights/what-is-the-industrial-metaverse-and-why-should-i-care.html

  130. V. Singh, K. Willcox, Engineering Design with Digital Thread. MIT Libraries, DSpace@MIT, 2021. https://dspace.mit.edu/handle/1721.1/114857

  131. M. Sonka et al., Image Processing, Analysis, and Machine Vision (Thomson. ISBN 978-0-495-08252-1, 2008)

    Google Scholar 

  132. B. Stackpole, D. Greenfield, Big Data. Automation World, 2022. https://www.automationworld.com/analytics/article/22485289/big-data

  133. F.G. Taddesse et al., Semantic-Based Merging of RSS Items. World Wide Web J. Internet Web Inf. Syst. J. Spec Issue Human-Centered Web Sci 2010. 13(1–2): 169–207, Springer

    Google Scholar 

  134. F. Tao et al., Manufacturing service management in cloud manufacturing: overview and future research directions. J. Manuf. Sci. Eng 137(2015), 040912 (2015)

    Article  Google Scholar 

  135. F. Tao et al., Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 94, 3563–3576 (2018)

    Article  Google Scholar 

  136. O. Taylor, A. Rodriguez, Optimal shape and motion planning for dynamic planar manipulation. Auton. Robot. 43(2), 327–344 (2019)

    Article  MathSciNet  Google Scholar 

  137. J. Tekli et al., Minimizing user effort in XML grammar matching. Inf. Sci. 210, 1–40 (2012) Elsevier

    Article  Google Scholar 

  138. J. Tekli et al., Semantic to Intelligent Web Era: Building Blocks, Applications, and Current Trends. International Conference on Managment of Emergent Digital EcoSystems (MEDES), 2013. pp. 159–168

    Google Scholar 

  139. J. Tekli, An overview on XML semantic disambiguation from unstructured text to semi-structured data: background, applications, and ongoing challenges. IEEE Trans. Knowl Data Eng. 28(6), 1383–1407 (2016)

    Article  Google Scholar 

  140. J. Tekli et al., Full-fledged semantic indexing and querying model designed for seamless integration in legacy RDBMS. Data Knowl. Eng. 117, 133–173 (2018)

    Article  Google Scholar 

  141. J. Tekli, An overview of cluster-based image search result organization: background, techniques, and ongoing challenges. Knowl. Inf. Syst. 64(3), 589–642 (2022)

    Article  Google Scholar 

  142. A. Tewari et al., State of the art on neural rendering. Comput. Graphics Forum 39(2), 701–727 (2020)

    Article  Google Scholar 

  143. S. Tilak et al., A taxonomy of wireless micro-sensor network models. ACM Mob. Comput. Commun. Rev. 6(2), 28 (2002)

    Article  Google Scholar 

  144. USAF Global Science and Technology Vision, T.F., Global Horizons Final Report. Homeland Security Digital Library, 2021. https://www.hsdl.org/c/

  145. A. Valdivia et al., Sentiment analysis in TripAdvisor. IEEE Intell. Syst. 32(4), 72–77 (2017)

    Article  Google Scholar 

  146. A. Valitutti et al., Developing affective lexical resources. PsychNology J. 2(1), 61–83 (2004)

    Google Scholar 

  147. D. Vilares et al., Universal, unsupervised (rule-based), uncovered sentiment analysis. Knowl.-Based Syst. 118, 45–55 (2017)

    Article  Google Scholar 

  148. O. Vinyals, Q. Le, A Neural Conversational Model. CoRR abs/1506.05869, 2015

    Google Scholar 

  149. S. Wang et al., Knowledge reasoning with semantic data for real-time data processing in smart factory. Sensors 18, 1–10 (2018)

    Google Scholar 

  150. T. Wang et al., Link Energy Minimization for Wireless Sensor Networks. Elsevier Ad Hoc Networks Special Issue on Cross-layer Design in Ad Hoc and Sensor Networks, 2012. 10(3):569–585

    Google Scholar 

  151. T. Warren, A Closer Look at HTC’s New Higher-Resolution Vive Pro. The Verge, 2018. https://www.theverge.com/2018/1/9/16866240/htc-vive-pro-vr-headset-hands-on-ces-2018

  152. D. Wu, D. Rosen, et al., Cloud-based design and manufacturing: a new paradigm in digital manufacturing and design innovation. Comput. Aided Des. 59, 1–14 (2015). https://doi.org/10.1016/j.cad.2014.07.006

    Article  Google Scholar 

  153. Q. Xie et al., Unsupervised Data Augmentation for Consistency Training. Conference on Neural Information Processing Systems (NeurIPS), 2020

    Google Scholar 

  154. X. Yao et al., Smart manufacturing based on cyber-physical systems and beyond. J. Intell. Manuf. 30(8), 2805–2817 (2019)

    Article  Google Scholar 

  155. D. Yaworsky, Word-Sense Disambiguation Using Statistical Models of Roget’s Categories Trained on Large Corpora. Proceedings of the International Conference on Computational Linguistics (Coling), 1992, vol 2, pp. 454–460. Nantes

    Google Scholar 

  156. D. Zacharopoulou et al., A Web-based Application to Support the Interaction of Spatial and Semantic Representation of Knowledge. AGILE: GIScience Series, 2022. 3:70

    Google Scholar 

  157. S. Zhang et al., Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary. Future Gener. Comput. Syst. 81, 395–403 (2018)

    Article  Google Scholar 

  158. T. Zhang et al., BIRCH: An Efficient Data Clustering Method for Very Large Databases. Proceedings of the ACM SIGMOD Conference on Management of Data, 1996. 25(2):103–114

    Google Scholar 

  159. T. Zhang et al., Fairness in graph-based semi-supervised learning. Knowl. Inf. Syst. 2023. 65(2): 543–570 (2023)

    Google Scholar 

  160. Z. Zhang et al., Moving Object Recognition for Airport Ground Surveillance Network. International Conference on Mobile Networks and Management (MONAMI’21) 2021. pp. 335–343

    Google Scholar 

  161. F. Zhou et al., A survey of visualization for smart manufacturing. J. Vis. 22, 419–435 (2019)

    Article  Google Scholar 

  162. W. Zhu, S. Vij, Extending SOA Infrastucture for Semantic Interoperability. 3rd Annual DoDSOA & Semantic Technology Symposium, 2011. Alion Science and Technology

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nassif, J., Tekli, J., Kamradt, M. (2024). Background and Technologies. In: Synthetic Data. Springer, Cham. https://doi.org/10.1007/978-3-031-47560-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47560-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47559-7

  • Online ISBN: 978-3-031-47560-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics