Abstract
The Metaverse will create an immersive and interoperable virtual universes for user interaction. The advancement of AR/VR technology, brain–computer interfaces (BCIs) via sensor technologies and 5G/6G links, has important implications for the Metaverse as different application domains will be realized sooner than predicted. However, its immersiveness and interoperability creates significant privacy and security issues beyond Web 2.0 technology. This position paper advances the existing knowledge in the space of privacy and security implications of the proposed platforms with particular focus on the friction between the Metaverse and existing data protection laws such as EU GDPR. Furthermore, this elaborates on Artificial Intelligence (AI) usage in the Metaverse, potential technical solutions for identified privacy and security challenges and future research directions as recommendations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Metaverse: Security and Privacy Issues (2021). https://doi.org/10.1109/TPSISA52974.2021.00032
Association of Computing Manufacturers: NFTGAN: Non-Fungible Token Art Generation Using Generative Adversarial Networks (2022). https://doi.org/10.1145/3529399.3529439
Bhattacharyya, D., Ranjan, R., Alisherov, F., Choi, M.: Bio-metric authentication: a review. Int. J. U-and E-Serv. Sci. Technol. 2(3), 13–28 (2009)
Boneh, D., Grotto, A., McDaniel, P., Papernot, N.: How relevant is the turing test in the age of sophisbots? IEEE Secur. Priv. 17(6), 64–71 (2019)
De Guzman, J.A., Thilakarathna, K., Seneviratne, A.: Security and privacy approaches in mixed reality: a literature survey. ACM Comput. Surv. (CSUR) 52(6), 1–37 (2019)
Di Pietro, R., Cresci, S.: Metaverse: security and privacy issues. In: 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), pp. 281–288. IEEE (2021)
Dwivedi, Y.E.A.: Metaverse beyond the hype: Multi-disciplinary perspectives on emerging challenges, opportunities and agenda for research practice and policy. Int. J. Inform. Manage. 66 (2022)
Fan, S., Zhang, H., Zeng, Y., Cai, W.: Hybrid blockchain-based resource trading system for federated learning in edge computing. IEEE Internet Things J. 8, 2252–2264 (2021)
Fernandez, C., Hui, P.: Life, the metaverse and everything: an overview of privacy, ethics, and governance in metaverse. In: 2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 272–277. IEEE (2022)
Fineman, B., Lewis, N.: Securing your reality: addressing security and privacy in virtual and augmented reality applications. https://er.educause.edu/articles/2018/5/securing-your-reality-addressing-security-and-privacy-in-virtual-andaugmented-reality-applications
Garg, P., Jain, A.: A robust technique for biometric image authentication using invisible watermarking. Multimedia Tools Appl. 82(2), 2237–2253 (2023)
Hasan, M., et al.: Lightweight encryption technique to enhance medical image security on internet of medical things applications. IEEE Access 9, 47731–47742 (2021)
Hinduja, S.: The Metaverse: Opportunities, Risks and Harms (2022). https://cyberbullying.org/metaverse
Hu, J., Iosifescu, A., LiKamWa, R.: Lenscap: split-process framework for fine-grained visual privacy control for augmented reality apps. In: Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services, pp. 14–27. ACM (2021)
Huang, Y., Li, Y.J., Cai, Z.: Security and privacy in the metaverse: a comprehensive survey. Big Data Mining Anal. 6(2), 234–247 (2023)
Huynh-The, T., Pham, Q., Pham, X., Nguyen, T., Han, Z., Kim, D.: Artificial intelligence for the metaverse: a survey (2022)
IEEE: A Privacy Framework for Games and Interactive Media (2018)
Kaur, M., Kumar, V.: A comprehensive review on image encryption techniques. Arch. Comput. Methods Eng. 27(1), 15–43 (2020)
Kreitmeir, D., Raschky, P.: The unintended consequences of censoring digital technology evidence from Ialy’s chatgpt ban (2023)
Kumar, S., Hu, Y., Andersen, M., Popa, R., Culler, D.: Jedi: Many-to-many end-to-end encryption and key delegation for Iot. In: Proceedings of the 28th USENIX Security Symposium (USENIX Security), pp. 1519–1536. USENIX Association (2019). https://www.usenix.org/system/files/sec19-kumar-sam.pdf
Lebeck, K., Ruth, K., Kohno, T., Roesner, F.: Securing augmented reality output. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 320–337. IEEE (2017)
Lin, C., He, D., Huang, X., Choo, K., Vasilakos, A.: Bsein: A blockchain-based secure mutual authentication with fine-grained access control system for industry 4.0. J. Netw. Comput. Appl. 116, 42–52 (2018)
Liu, H., Zhang, S., Zhang, P., Zhou, X., Shao, X., Pu, G., Zhang, Y.: Blockchain and federated learning for collaborative intrusion detection in vehicular edge computing. IEEE Trans. Veh. Technol. 70, 6073–6084 (2021)
Stamm, M.C., Lin, W., Liu, K.: Temporal forensics and anti-forensics for motion compensated video. IEEE Trans. Inform. Forensics Secur. 7(4), 1315–1329 (2012)
Naik, N., Jenkins, P.: Governing principles of self-sovereign identity applied to blockchain enabled privacy preserving identity management systems. In: IEEE International Symposium on Systems Engineering (ISSE), pp. 1–6 (2020)
Naik, N., Jenkins, P.: Your identity is yours: Take back control of your identity using gdpr compatible self-sovereign identity. In: 7th International Conference on Behavioral and Social Computing pp. 1–6 (2020)
Naik, N., Jenkins, P.: Is self-sovereign identity really sovereign? In: 2022 IEEE International Symposium on Systems Engineering (ISSE). IEEE (2022)
n.d.: Art. 17 gdpr- right to erasure (‘right to be forgotten’) (online). https://gdpr-info.eu/art-17-gdpr/
n.d.: Art. 5 gdpr-principles relating to the processing of personal data. https://gdpr-info.eu/art-5-gdpr/
n.d.: Chapter 3- rights of the data subject (online). https://gdpr-info.eu/chapter-3/
n.d.: Chapter 4 controller and processor (online). https://gdpr-info.eu/chapter-4/
n.d.: The metaverse: The evolution of a universal digital platform (2021). https://www.nortonrosefulbright.com/en-de/knowledge/publications/5cd471a1/the-metaverse-the-evolution-of-a-universal-digital-platform
n.d.: Online safety bill (2022). https://bills.parliament.uk/bills/3137
n.d.: Protecting trusted media. https://www.originproject.info/
n.d.: Protecting trusted media. https://www.streambedmedia.com/
n.d.: Metaverse app allows kids into virtual strip clubs - bbc news (2023). https://www.youtube.com/watch?v=3n9iXlA7HJk
Neubauer, T., Heurix, J.: A methodology for the pseudonymization of medical data. Int. J. Med. Informatics 80(3), 190–204 (2011)
Neubauer, T., Heurix, J.: The social metaverse: battle for privacy. IEEE Technol. Soc. Mag. 37(2), 52–61 (2018)
Park, S., Kim, Y.: A metaverse: taxonomy, components, applications and open challenges. IEEE Access 10, 4209–4251 (2022)
Rid, T., Buchanan, B.: Attributing cyber attack. J. Strateg. Stud. 38, 4–39 (2014)
Mai, S., Hu, H., Xing, S.: Modality to modality translation: An adversarial representation learning and graph fusion network for multimodal fusion. Proc. AAAI Conf. Artif. Intell. 34(1), 164–172 (2020)
Seth, B., Dalal, S., Jaglan, V., Le, D., Mohan, S., Srivastava, G.: Integrating encryption techniques for secure data storage in the cloud. Trans. Emerg. Telecommun. Technol. 33(4), e4108 (2022)
Springer: Distributed ledger technology. In Internet Computing (2020)
Sun, J., Zhang, T., Xie, X., Ma, X., Zheng, Y., Chen, L., Liu, Y.: Stealthy and efficient adversarial attacks against deep reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5883–5891 (2022)
Swaminathan, A., Wu, M., Liu, K.: Digital image forensics via intrinsic fingerprints. IEEE Trans. Inf. Forensics Secur. 3(1), 101–117 (2008)
Tanwar, S., Bhatia, Q., Patel, P., Kumari, A., Singh, P., Hong, W.: Machine learning adoption in blockchain-based smart applications: the challenges, and a way forward. IEEE Access 8, 474–488 (2019)
Thockchom, N., Singh, M., Nand, U.: A novel ensemble learning-based model for network intrusion detection (2023). https://doi.org/10.1007/s40747-023-01013-7
Wang, Q., Li, R., Wang, Q., Chen, S.: Non-fungible token (nft): Overview, evaluation, opportunities and challenges
Wang, W., Hu, Y., Chen, L., Huang, X., Sunar, B.: Exploring the feasibility of fully homomorphic encryption. IEEE Trans. Comput. 64(3), 698–706 (2015)
Wang, Y.: A survey on metaverse: fundamentals, security and privacy. IEEE Commun. Surv. Tutor. 25(1), 319–352 (2023)
webfoundation.org: Online abuse in the metaverse untangled (online) (2022). https://webfoundation.org/2022/02/online-abuse-in-the-metaverse-untangled
Xu, M.: A full dive into realizing the edge-enabled metaverse: visions, enabling technologies and challenges. IEEE Commun. Surv. Tutor. 25(1), 656–700 (2023)
Xu, S., Yang, G., Mu, Y., Deng, R.: Secure fine-grained access control and data sharing for dynamic groups in the cloud. IEEE Trans. Inf. Forensics Secur. 13(8), 2101–2113 (2018)
Xu, S.E.A.: A secure EMR sharing system with tamper re-sistance and expressive access control. IEEE Trans. Depend. Secure Comput. 20(1), 53–67 (2023)
Zhang, J., Zhong, H., Cui, J., Xu, Y., Liu, L.: Smaka: secure many-to-many authentication and key agreement scheme for vehicular networks. IEEE Trans. Inf. Forensics Secur. 16, 1810–1824 (2021)
Zhang, Y., Zhao, R., Xiao, X., Lan, R., Liu, Z., Zhang, X.: Hf-tpe: High-fidelity thumbnail-preserving encryption. IEEE Trans. Circ. Syst. Video Technol. 32(3), 947–961 (2022)
Zhang, Z., Ning, H., Shi, F.: Artificial intelligence in cybersecurity: research advances, challenges and opportunities. Artif. Intell. Rev. 55, 1029–1053 (2022)
Zhao, R., Zhang, Y., Zhu, Y., Lan, R., Hua, Z.: Metaverse: Security and Privacy Concerns
Zhaofeng, M., Weihua, H., Hongmin, G.: A new blockchain-based trusted DRM scheme for built-in content protection. EURASIP J. Image Video Process. 1, 1–12 (2018)
Zheng, H., Zhang, Z., Gu, J., Lee, H., Prakash, A.: In: Efficient adversarial training with transferable adversarial examples. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1178–1187 (2020)
Zhou, Y., Xiao, X., Chen, C., Zhao, X., Chen, J.: Self-powered sensing technologies for human metaverse interfacing. Joule 6(7), 1381–1389 (2022)
Zia, U., M. McCartney, M., Scotney, B., Martinez, J., AbuTair, M., Memon, J., Sajjad, A.: Survey on image encryption techniques using chaotic maps in spatial, transform and spatiotemporal domains. Int. J. Inform. Secur. 21(4), 917–935 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bentotahewa, V., Khattak, S., Hewage, C., Sengar, S.S., Jenkins, P. (2024). Privacy and Security Landscape of Metaverse. In: Naik, N., Jenkins, P., Grace, P., Yang, L., Prajapat, S. (eds) Advances in Computational Intelligence Systems. UKCI 2023. Advances in Intelligent Systems and Computing, vol 1453. Springer, Cham. https://doi.org/10.1007/978-3-031-47508-5_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-47508-5_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47507-8
Online ISBN: 978-3-031-47508-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)