Nothing Special   »   [go: up one dir, main page]

Skip to main content

BundleCleaner: Unsupervised Denoising and Subsampling of Diffusion MRI-Derived Tractography Data

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2023)

Abstract

We present BundleCleaner, an unsupervised multi-step framework that can filter, denoise and subsample bundles derived from diffusion MRI-based whole-brain tractography. Our approach considers both the global bundle structure and local streamline-wise features. We apply BundleCleaner to bundles generated from single-shell diffusion MRI data in an independent clinical sample of older adults from India using probabilistic tractography and the resulting ‘cleaned’ bundles can better align with the atlas bundles with reduced overreach. In a downstream tractometry analysis, we show that the cleaned bundles, represented with less than 20% of the original set of points, can robustly localize along-tract microstructural differences between 32 healthy controls and 34 participants with Alzheimer’s disease ranging in age from 55 to 84 years old. Our approach can help reduce memory burden and improving computational efficiency when working with tractography data, and shows promise for large-scale multi-site tractometry.

This work was supported by the NIH grants RF1AG057892 and R01AG060610, the Department of Science and Technology, Govt. of India, grant nos. DST-SR/CSI/73/2011 (G); DST-SR/CSI/70/2011 (G); and DST/CSRI/2017/249 (G).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    FiberNeat implementation is available at https://github.com/BramshQamar/FiberNeat/tree/main.

References

  1. Andersson, J.L., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20(2), 870–888 (2003). https://doi.org/10.1016/S1053-8119(03)00336-7

    Article  Google Scholar 

  2. Andersson, J.L., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016). https://doi.org/10.1016/j.neuroimage.2015.10.019

    Article  Google Scholar 

  3. Ashburner, J., Friston, K.J.: Voxel-based morphometry-the methods. Neuroimage 11(6), 805–821 (2000). https://doi.org/10.1006/nimg.2000.0582

    Article  Google Scholar 

  4. Astolfi, P., et al.: Tractogram filtering of anatomically non-plausible fibers with geometric deep learning (2020). arXiv:2003.11013

  5. Chandio, B.Q., et al.: Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations. Sci. Rep. 10(1), 17149 (2020). https://doi.org/10.1038/s41598-020-74054-4

    Article  Google Scholar 

  6. Chandio, B.Q., et al.: FiberNeat: unsupervised streamline clustering and white matter tract filtering in latent space. Preprint, Neuroscience (2021). https://doi.org/10.1101/2021.10.26.465991

  7. Côté, M.A., et al.: Tractometer: towards validation of tractography pipelines. Med. Image Anal. 17(7), 844–857 (2013). https://doi.org/10.1016/j.media.2013.03.009

    Article  Google Scholar 

  8. Garyfallidis, E., et al.: QuickBundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012). https://doi.org/10.3389/fnins.2012.00175

    Article  Google Scholar 

  9. Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8 (2014). https://doi.org/10.3389/fninf.2014.00008

  10. Garyfallidis, E., et al.: Recognition of white matter bundles using local and global streamline-based registration and clustering. Neuroimage 170, 283–295 (2018). https://doi.org/10.1016/j.neuroimage.2017.07.015

    Article  Google Scholar 

  11. Girard, G., Whittingstall, K., Deriche, R., Descoteaux, M.: Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage 98, 266–278 (2014). https://doi.org/10.1016/j.neuroimage.2014.04.074

    Article  Google Scholar 

  12. Hatton, S.N., et al.: White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study. Brain 143(8), 2454–2473 (2020). https://doi.org/10.1093/brain/awaa200

    Article  Google Scholar 

  13. Jbabdi, S., Johansen-Berg, H.: Tractography: where do we go from here? Brain Connectivity 1(3), 169–183 (2011). https://doi.org/10.1089/brain.2011.0033

    Article  Google Scholar 

  14. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage 62(2), 782–790 (2012). https://doi.org/10.1016/j.neuroimage.2011.09.015

    Article  Google Scholar 

  15. Kellner, E., et al.: Gibbs-ringing artifact removal based on local subvoxel-shifts: Gibbs-ringing artifact removal. Magn. Reson. Med. 76(5), 1574–1581 (2016). https://doi.org/10.1002/mrm.26054

    Article  Google Scholar 

  16. Koshiyama, D., et al.: White matter microstructural alterations across four major psychiatric disorders: mega-analysis study in 2937 individuals. Mol. Psychiatry 25(4), 883–895 (2020). https://doi.org/10.1038/s41380-019-0553-7

    Article  Google Scholar 

  17. Legarreta, J.H., et al.: Filtering in tractography using autoencoders (FINTA). Med. Image Anal. 72, 102126 (2021). https://doi.org/10.1016/j.media.2021.102126

    Article  Google Scholar 

  18. Manjón, J.V., et al.: Diffusion weighted image denoising using overcomplete local PCA. PLoS ONE 8(9), e73021 (2013). https://doi.org/10.1371/journal.pone.0073021

    Article  Google Scholar 

  19. Neto Henriques, R.: Advanced methods for diffusion MRI data analysis and their application to the healthy ageing brain (2017). https://doi.org/10.17863/CAM.29356

  20. O’Donnell, L.J., Westin, C.F.: An introduction to diffusion tensor image analysis. Neurosurg. Clinics North America 22(2), 185–196, viii (2011). https://doi.org/10.1016/j.nec.2010.12.004

  21. Presseau, C., et al.: A new compression format for fiber tracking datasets. Neuroimage 109, 73–83 (2015). https://doi.org/10.1016/j.neuroimage.2014.12.058

    Article  Google Scholar 

  22. Sarwar, T., et al.: Mapping connectomes with diffusion MRI: deterministic or probabilistic tractography? Magn. Reson. Med. 81(2), 1368–1384 (2019). https://doi.org/10.1002/mrm.27471

    Article  Google Scholar 

  23. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964). https://doi.org/10.1021/ac60214a047

    Article  Google Scholar 

  24. Sharp, N., Crane, K.: A Laplacian for nonmanifold triangle meshes. Comput. Graph. Forum 39(5), 69–80 (2020). https://doi.org/10.1111/cgf.14069

    Article  Google Scholar 

  25. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI. Neuroimage 35(4), 1459–1472 (2007). https://doi.org/10.1016/j.neuroimage.2007.02.016

    Article  Google Scholar 

  26. Tournier, J.D., et al.: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019). https://doi.org/10.1016/j.neuroimage.2019.116137

    Article  Google Scholar 

  27. Wasserthal, J., Neher, P., Maier-Hein, K.H.: TractSeg - fast and accurate white matter tract segmentation. Neuroimage 183, 239–253 (2018). https://doi.org/10.1016/j.neuroimage.2018.07.070

    Article  Google Scholar 

  28. Yeh, F.C., et al.: Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage 178, 57–68 (2018). https://doi.org/10.1016/j.neuroimage.2018.05.027

    Article  Google Scholar 

  29. Zeng, J., et al.: 3D point cloud denoising using graph Laplacian regularization of a low dimensional manifold model (2019). arXiv:1803.07252 [cs]

  30. Zhang, S., et al.: Hypergraph spectral analysis and processing in 3D point cloud. IEEE Trans. Image Process. 30, 1193–1206 (2021). https://doi.org/10.1109/TIP.2020.3042088

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixue Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, Y. et al. (2023). BundleCleaner: Unsupervised Denoising and Subsampling of Diffusion MRI-Derived Tractography Data. In: Karaman, M., Mito, R., Powell, E., Rheault, F., Winzeck, S. (eds) Computational Diffusion MRI. CDMRI 2023. Lecture Notes in Computer Science, vol 14328. Springer, Cham. https://doi.org/10.1007/978-3-031-47292-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47292-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47291-6

  • Online ISBN: 978-3-031-47292-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics