Abstract
Recently the usage of narratives as a means of fusing information from large knowledge graphs (KGs) into a coherent line of argumentation has been proposed. Narratives are especially useful in event-centric knowledge graphs in that they provide a means to categorize real-world events by well-known narrations. However, specifically for controversial events a problem in information fusion arises. Namely, the existence of multiple viewpoints regarding the validity of certain event aspects, e.g., regarding the role a participant takes in an event. Expressing those viewpoints into large KGs is challenging, because disputed information provided by different viewpoints may introduce inconsistencies. Hence, most KGs only feature a single view on the contained information, hampering the effectiveness of narrative information access. In this paper, we introduce attributions, i.e., parameterized predicates that allow for the representation of facts that are only valid in a certain viewpoint. For this, we develop a conceptual model that allows for the representation of viewpoint-dependent information and further describes how such information can be fused for querying and reasoning consistently.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
Note, that the president of Russia is not a member of the Russian government.
References
AlDayel, A., Magdy, W.: Stance detection on social media: state of the art and trends. J. Inf. Process. Manag. 58(4), 102597 (2021). https://doi.org/10.1016/j.ipm.2021.102597
Almeida, J.P.A., Falbo, R.A., Guizzardi, G.: Events as entities in ontology-driven conceptual modeling. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 469–483. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_39
Bestvater, S., Monroe, B.: Sentiment is not stance: target-aware opinion classification for political text analysis. Polit. Anal. 31(2), 235–256 (2023). https://doi.org/10.1017/pan.2022.10
Gottschalk, S., Demidova, E.: EventKG: a multilingual event-centric temporal knowledge graph. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 272–287. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_18
Gottschalk, S., et al.: OEKG: the open event knowledge graph. In: International Workshop on Cross-Lingual Event-centric Open Analytics Co-located with the Web Conference (CLEOPATRA@WWW). CEUR Workshop Proceedings. CEUR-WS.org (2021). https://ceur-ws.org/Vol-2829/paper5.pdf
Guizzardi, G., Wagner, G., de Almeida Falbo, R., Guizzardi, R.S.S., Almeida, J.P.A.: Towards ontological foundations for the conceptual modeling of events. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 327–341. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9_27
Gómez Álvarez, L., Rudolph, S., Strass, H.: How to agree to disagree - managing ontological perspectives using standpoint logic. In: Sattler, U., et al. (eds.) ISWC 2022. LNCS, vol. 13489, pp. 125–141. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19433-7_8
Hada, R., et al.: Beyond digital “echo chambers”: the role of viewpoint diversity in political discussion. In: International Conference on Web Search and Data Mining (WSDM). ACM (2023). https://doi.org/10.1145/3539597.3570487
van Hage, W.R., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and use of the simple event model (SEM). J. Web Semant. 9(2), 128–136 (2011). https://doi.org/10.1016/j.websem.2011.03.003
Hemam, M., Boufaïda, Z.: MVP-OWL: a multi-viewpoints ontology language for the Semantic Web. Int. J. Reason. Based Intell. Syst. (2011). https://doi.org/10.1504/IJRIS.2011.043539
Herman, D.: Narrative theory and the cognitive sciences. Narrative Inq. 11(1) (2001). https://doi.org/10.1075/ni.11.1.01her
Hernández, D., Hogan, A., Krötzsch, M.: Reifying RDF: what works well with Wikidata? In: International Workshop on Scalable Semantic Web Knowledge Base Systems Co-located with International Semantic Web Conference (SSWS@ISWC). CEUR-WS.org (2015). https://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf
Klyne, G., Carroll, J., McBride, B.: RDF 1.1 concepts and abstract syntax (2014). https://www.w3.org/TR/rdf11-concepts/
Kotonya, G., Sommerville, I.: Requirements engineering with viewpoints. Softw. Eng. J. 11(1), 5–18 (1996). https://doi.org/10.1049/sej.1996.0002
Kroll, H., Nagel, D., Balke, W.-T.: Modeling narrative structures in logical overlays on top of knowledge repositories. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 250–260. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_18
Kublauch, H., Kontokostas, D.: Shapes constraint language (SHACL) (2017). https://www.w3.org/TR/shacl/
László, J.: The Science of Stories: An Introduction to Narrative Psychology. Routledge, Oxfordshire (2008). https://doi.org/10.4324/9780203894934
Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like RDF reification?: making statements about statements using singleton property. In: International World Wide Web Conference (WWW). ACM (2014). https://doi.org/10.1145/2566486.2567973
Osman, I., Yahia, S.B., Diallo, G.: Ontology integration: approaches and challenging issues. Inf. Fusion 71, 38–63 (2021). https://doi.org/10.1016/j.inffus.2021.01.007
Plötzky, F., Balke, W.: It’s the same old story! Enriching event-centric knowledge graphs by narrative aspects. In: Web Science Conference (WebSci). ACM (2022). https://doi.org/10.1145/3501247.3531565
Porzel, R., Pomarlan, M., Spillner, L., Bateman, J., Mildner, T., Santagiustina, C.: Narrativizing knowledge graphs. In: International Workshop on AI Technology for Legal Documentations and International Workshop on Knowledge Graph Summary Co-located with the International Semantic Web Conference (AI4LEGAL/KGSum@ISWC). CEUR Workshop Proceedings, CEUR-WS.org (2022). https://ceur-ws.org/Vol-3257/paper11.pdf
Quraishi, M., Fafalios, P., Herder, E.: Viewpoint discovery and understanding in social networks. In: Web Science Conference (WebSci). ACM, Amsterdam (2018). https://doi.org/10.1145/3201064.3201076
Rospocher, M., et al.: Building event-centric knowledge graphs from news. J. Web Semant. (2016). https://doi.org/10.1016/j.websem.2015.12.004
Rudnik, C., Ehrhart, T., Ferret, O., Teyssou, D., Troncy, R., Tannier, X.: Searching news articles using an event knowledge graph leveraged by Wikidata. In: Companion of World Wide Web Conference (WWW). ACM (2019). https://doi.org/10.1145/3308560.3316761
Scherp, A., Franz, T., Saathoff, C., Staab, S.: F - a model of events based on the foundational ontology DOLCE+DnS ultralite. In: International Conference on Knowledge Capture (K-CAP). ACM (2009). https://doi.org/10.1145/1597735.1597760
Schreiber, G., Raimond, Y.: RDF 1.1 Primer (2014). https://www.w3.org/TR/rdf11-primer/
Sommerville, I., Sawyer, P., Viller, S.: Managing process inconsistency using viewpoints. IEEE Trans. Softw. Eng. 25(6), 784–799 (1999). https://doi.org/10.1109/32.824395
Stuckenschmidt, H.: Toward multi-viewpoint reasoning with OWL ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 259–272. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_21
Sultan, M., Miranskyy, A.: Ordering stakeholder viewpoint concerns for holistic enterprise architecture: the W6H framework. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, (SAC), pp. 78–85. ACM (2018). https://doi.org/10.1145/3167132.3167137
Thonet, T., Cabanac, G., Boughanem, M., Pinel-Sauvagnat, K.: Users are known by the company they keep: topic models for viewpoint discovery in social networks. In: Conference on Information and Knowledge Management (CIKM) (2017). https://doi.org/10.1145/3132847.3132897
Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014). https://doi.org/10.1145/2629489
Acknowledgement
Supported by the Leibniz-ScienceCampus Postdigital Participation funded by the Leibniz Association (Leibniz-Gemeinschaft).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Plötzky, F., Britz, K., Balke, WT. (2023). Shards of Knowledge – Modeling Attributions for Event-Centric Knowledge Graphs. In: Almeida, J.P.A., Borbinha, J., Guizzardi, G., Link, S., Zdravkovic, J. (eds) Conceptual Modeling. ER 2023. Lecture Notes in Computer Science, vol 14320. Springer, Cham. https://doi.org/10.1007/978-3-031-47262-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-47262-6_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47261-9
Online ISBN: 978-3-031-47262-6
eBook Packages: Computer ScienceComputer Science (R0)