Abstract
The crucial task of analysing the complex dynamics of the research landscape and uncovering the latest insights from the scientific literature is of paramount importance to researchers, governments, and commercial organizations. Springer Nature, one of the leading academic publishers worldwide, plays a significant role in this domain and regularly integrates and processes a variety of data sources to inform strategic decisions. Since exploring the resulting data is a challenging task, in 2021 we developed AIDA-Bot, a chatbot that addresses inquiries about the research landscape by utilising a large-scale knowledge graph of scholarly data. This paper presents the novel AIDA-Bot 2.0, which can both 1) support a set of predetermined question types by automatically translating them to formal queries on the knowledge graph, and 2) answer open questions by summarising information from relevant articles. We evaluated the performance of AIDA-Bot 2.0 through a comparative assessment against alternative architectures and an extensive user study. The results indicate that the novel features provide more accurate information and an excellent user experience.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Academia/Industry DynAmics Knowledge Graph - http://w3id.org/aida/.
- 2.
Google BigQuery - https://cloud.google.com/bigquery.
- 3.
Google Vertex AI Workbench - https://cloud.google.com/vertex-ai-workbench.
- 4.
OpenAlex - https://openalex.org/.
- 5.
ROR - https://ror.org/.
- 6.
CSO - https://w3id.org/cso.
- 7.
INDUSO - https://w3id.org/aida/#induso.
- 8.
- 9.
AIDA Knowledge Graph Download - https://w3id.org/aida.
- 10.
Spacy - https://spacy.io/.
- 11.
Specifically, we adopted the “en_core_web_sm” model.
- 12.
- 13.
- 14.
- 15.
- 16.
AIDA-Bot 2.0 evaluation data - https://w3id.org/aida/downloads#evaluation.
- 17.
SUS Questionnaire Questions: https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html.
- 18.
Interpreting a SUS score - https://measuringu.com/interpret-sus-score/.
- 19.
With the notation \(\textit{X}\pm \textit{Y}\), we specify that X is the average score and Y the standard deviation.
- 20.
SN Insights - https://sn-insights.dimensions.ai/.
- 21.
Scite - https://scite.ai/.
- 22.
Elicit - https://elicit.org/.
- 23.
CoreGPT - https://tinyurl.com/mvrk2z4x.
References
Expert System for Question Answering on Anomalous Events and Mitigation Strategies Using Bidirectional Transformers and Knowledge Graphs, Abu Dhabi International Petroleum Exhibition and Conference, vol. Day 3 Wed, 02 November 2022 (2022). https://doi.org/10.2118/211855-MS, d031S084R002
Angioni, S., Salatino, A., Osborne, F., Birukou, A., Recupero, D.R., Motta, E.: Leveraging knowledge graph technologies to assess journals and conferences at springer nature. In: Sattler, U., et al. (eds.) The Semantic Web - ISWC 2022. LNCS, pp. 735–752. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19433-7_42
Angioni, S., Salatino, A., Osborne, F., Recupero, D.R., Motta, E.: Aida: a knowledge graph about research dynamics in academia and industry. Quant. Sci. Stud. 2(4), 1356–1398 (2021)
Angioni, S., Salatino, A.A., Osborne, F., Recupero, D.R., Motta, E.: Integrating knowledge graphs for analysing academia and industry dynamics. In: Bellatreche, L., et al. (eds.) TPDL/ADBIS -2020. CCIS, vol. 1260, pp. 219–225. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55814-7_18
Athreya, R.G., Ngonga Ngomo, A.C., Usbeck, R.: Enhancing community interactions with data-driven chatbots-the dbpedia chatbot. In: Companion Proceedings of the The Web Conference 2018, Lyon, France, pp. 143–146 (2018)
Auer, S., et al.: The SciQA scientific question answering benchmark for scholarly knowledge. Sci. Rep. 13(1), 7240 (2023). https://doi.org/10.1038/s41598-023-33607-z
Bavaresco, R., et al.: Conversational agents in business: a systematic literature review and future research directions. Comput. Sci. Rev. 36, 100239 (2020)
Bharti, U., Bajaj, D., Batra, H., Lalit, S., Lalit, S., Gangwani, A.: Medbot: conversational artificial intelligence powered chatbot for delivering tele-health after covid-19. In: 2020 5th International Conference on Communication and Electronics Systems (ICCES), Budva, Montenegro, pp. 870–875 (2020). https://doi.org/10.1109/ICCES48766.2020.9137944
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, New York, NY, USA, pp. 1247–1250. Association for Computing Machinery (2008). https://doi.org/10.1145/1376616.1376746
Brown, T., et al.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
Chen, H., Liu, X., Yin, D., Tang, J.: A survey on dialogue systems: recent advances and new frontiers. SIGKDD Explor. Newsl. 19(2), 25–35 (2017). https://doi.org/10.1145/3166054.3166058
Cui, L., Huang, S., Wei, F., Tan, C., Duan, C., Zhou, M.: SuperAgent: a customer service chatbot for E-commerce websites. In: Proceedings of ACL 2017, System Demonstrations, Vancouver, Canada, pp. 97–102. Association for Computational Linguistics (2017). https://aclanthology.org/P17-4017
Dessí, D., Osborne, F., Recupero, D.R., Buscaldi, D., Motta, E.: Scicero: a deep learning and NLP approach for generating scientific knowledge graphs in the computer science domain. Knowl.-Based Syst. 258, 109945 (2022)
Divya, S., Indumathi, V., Ishwarya, S., Priyasankari, M., Devi, S.K.: A self-diagnosis medical chatbot using artificial intelligence. J. Web Dev. Web Des. 3(1), 1–7 (2018)
Fensel, D., et al.: Knowledge graphs methodology, tools and selected use cases (2020). https://lib.ugent.be/catalog/ebk01:4100000010122122
Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngonga Ngomo, A.C.: Survey on challenges of question answering in the semantic web. Semantic Web 8(6), 895–920 (2017)
Hsu, P., Zhao, J., Liao, K., Liu, T., Wang, C.: Allergybot: a chatbot technology intervention for young adults with food allergies dining out. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, Denver, Colorado, pp. 74–79 (2017)
Laranjo, L., et al.: Conversational agents in healthcare: a systematic review. J. Am. Med. Inform. Assoc. 25(9), 1248–1258 (2018)
Li, L., Lee, K.Y., Emokpae, E., Yang, S.B.: What makes you continuously use chatbot services? evidence from Chinese online travel agencies. Electron. Mark. (2021). https://doi.org/10.1007/s12525-020-00454-z
Mariani, M.M., Hashemi, N., Wirtz, J.: Artificial intelligence empowered conversational agents: a systematic literature review and research agenda. J. Bus. Res. 161, 113838 (2023). https://doi.org/10.1016/j.jbusres.2023.113838
Meloni, A., Angioni, S., Salatino, A., Osborne, F., Reforgiato Recupero, D.: Aida-bot: a conversational agent to explore scholarly knowledge graphs. CEUR-WS (2021). https://ceur-ws.org/Vol-2980/paper310.pdf
Meloni, A., Angioni, S., Salatino, A.A., Osborne, F., Recupero, D.R., Motta, E.: Integrating conversational agents and knowledge graphs within the scholarly domain. IEEE Access 11, 22468–22489 (2023). https://doi.org/10.1109/ACCESS.2023.3253388
Mohan, S., Chowdhary, C.: An AI-based chatbot using deep learning. In: Intelligent Systems: Advances in Biometric Systems, Soft Computing, Image Processing, and Data Analytics, chap. 12, London, UK, pp. 231–242. Apple Academic Press (2019). https://doi.org/10.1201/9780429265020-12
Mora-Cantallops, M., Sánchez-Alonso, S., García-Barriocanal, E.: A systematic literature review on wikidata. Data Technologies and Applications (2019)
Nayyeri, M., et al.: Trans4e: link prediction on scholarly knowledge graphs. Neurocomputing 461, 530–542 (2021)
Ni, L., Lu, C., Liu, N., Liu, J.: MANDY: towards a smart primary care chatbot application. In: Chen, J., Theeramunkong, T., Supnithi, T., Tang, X. (eds.) KSS 2017. CCIS, vol. 780, pp. 38–52. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6989-5_4
Oh, K.J., Lee, D., Ko, B., Choi, H.J.: A chatbot for psychiatric counseling in mental healthcare service based on emotional dialogue analysis and sentence generation. In: 2017 18th IEEE International Conference on Mobile Data Management (MDM), KAIST, Daejeon, pp. 371–375. IEEE (2017)
Okonkwo, C.W., Ade-Ibijola, A.: Chatbots applications in education: a systematic review. Comput. Educ. Artif. Intell. 2, 100033 (2021). https://doi.org/10.1016/j.caeai.2021.100033
OpenAI: Gpt-4 technical report (2023)
Osborne, F., Motta, E.: Pragmatic ontology evolution: reconciling user requirements and application performance. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 495–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_29
Pang, R.Y., et al.: QuALITY: question answering with long input texts, yes! In: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Seattle, United States, pp. 5336–5358. Association for Computational Linguistics (2022). https://doi.org/10.18653/v1/2022.naacl-main.391, https://aclanthology.org/2022.naacl-main.391
Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semantic web 8(3), 489–508 (2017)
Peng, C., Xia, F., Naseriparsa, M., Osborne, F.: Knowledge graphs: opportunities and challenges. Artif. Intell. Rev. 56, 1–32 (2023)
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners (2019)
Ranoliya, B.R., Raghuwanshi, N., Singh, S.: Chatbot for university related FAQs. In: 2017 International Conference on Advances in Computing. Communications and Informatics (ICACCI), Manipal, India, pp. 1525–1530. IEEE (2017)
Rastogi, A., Zang, X., Sunkara, S., Gupta, R., Khaitan, P.: Towards scalable multi-domain conversational agents: the schema-guided dialogue dataset. In: Proceedings of the AAAI Conference on Artificial Intelligence, New York, USA, vol. 34, pp. 8689–8696 (2020)
Reimers, N., Gurevych, I.: Sentence-Bert: sentence embeddings using SIAMESE Bert-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2019). https://arxiv.org/abs/1908.10084
Roller, S., et al.: Recipes for building an open-domain chatbot. In: EACL. Online (2021)
Rooein, D., Bianchini, D., Leotta, F., Mecella, M., Paolini, P., Pernici, B.: achat-wf: generating conversational agents for teaching business process models. Softw. Syst. Model. (2021). https://doi.org/10.1007/s10270-021-00925-7
Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Disc. Data (TKDD) 15(2), 1–49 (2021)
Salatino, A.A., Osborne, F., Birukou, A., Motta, E.: Improving editorial workflow and metadata quality at springer nature. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 507–525. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_31
Salatino, A.A., Osborne, F., Motta, E.: Augur: Forecasting the emergence of new research topics. In: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries. JCDL 2018, pp. 303–312, New York, NY, USA. ACM (2018). https://doi.org/10.1145/3197026.3197052
Salatino, A.A., Osborne, F., Thanapalasingam, T., Motta, E.: The CSO classifier: ontology-driven detection of research topics in scholarly articles. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds.) TPDL 2019. LNCS, vol. 11799, pp. 296–311. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30760-8_26
Salatino, A.A., Thanapalasingam, T., Mannocci, A., Osborne, F., Motta, E.: The computer science ontology: a large-scale taxonomy of research areas. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 187–205. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_12
Sarosa, M., Kusumawardani, M., Suyono, A., Wijaya, M.H.: Developing a social media-based chatbot for English learning. IOP Conf. Ser. Materials Sci. Eng. 732(1), 012074 (2020). https://doi.org/10.1088/1757-899x/732/1/012074
Singh, J., Joesph, M.H., Jabbar, K.B.A.: Rule-based chabot for student enquiries. J. Phys. Conf. Ser. 1228(1), 012060 (2019). https://doi.org/10.1088/1742-6596/1228/1/012060
Stasaski, K., Hearst, M.: Semantic diversity in dialogue with natural language inference. In: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, United States, pp. 85–98. Association for Computational Linguistics, Seattle (2022). https://doi.org/10.18653/v1/2022.naacl-main.6 , https://aclanthology.org/2022.naacl-main.6
Thanapalasingam, T., Osborne, F., Birukou, A., Motta, E.: Ontology-based recommendation of editorial products. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 341–358. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_21
Touvron, H., et al.: Llama: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)
Vaira, L., Bochicchio, M.A., Conte, M., Casaluci, F.M., Melpignano, A.: Mamabot: a system based on ml and NLP for supporting women and families during pregnancy. In: Proceedings of the 22nd International Database Engineering & Applications Symposium, Villa San Giovanni, Italy, pp. 273–277 (2018)
Zhu, Q., et al.: Collective knowledge graph multi-type entity alignment. In: The Web Conference 2020 (2020). https://www.amazon.science/publications/collective-knowledge-graph-multi-type-entity-alignment
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Meloni, A. et al. (2023). AIDA-Bot 2.0: Enhancing Conversational Agents with Knowledge Graphs for Analysing the Research Landscape. In: Payne, T.R., et al. The Semantic Web – ISWC 2023. ISWC 2023. Lecture Notes in Computer Science, vol 14266. Springer, Cham. https://doi.org/10.1007/978-3-031-47243-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-47243-5_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47242-8
Online ISBN: 978-3-031-47243-5
eBook Packages: Computer ScienceComputer Science (R0)