Nothing Special   »   [go: up one dir, main page]

Skip to main content

AIDA-Bot 2.0: Enhancing Conversational Agents with Knowledge Graphs for Analysing the Research Landscape

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2023 (ISWC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14266))

Included in the following conference series:

Abstract

The crucial task of analysing the complex dynamics of the research landscape and uncovering the latest insights from the scientific literature is of paramount importance to researchers, governments, and commercial organizations. Springer Nature, one of the leading academic publishers worldwide, plays a significant role in this domain and regularly integrates and processes a variety of data sources to inform strategic decisions. Since exploring the resulting data is a challenging task, in 2021 we developed AIDA-Bot, a chatbot that addresses inquiries about the research landscape by utilising a large-scale knowledge graph of scholarly data. This paper presents the novel AIDA-Bot 2.0, which can both 1) support a set of predetermined question types by automatically translating them to formal queries on the knowledge graph, and 2) answer open questions by summarising information from relevant articles. We evaluated the performance of AIDA-Bot 2.0 through a comparative assessment against alternative architectures and an extensive user study. The results indicate that the novel features provide more accurate information and an excellent user experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Academia/Industry DynAmics Knowledge Graph - http://w3id.org/aida/.

  2. 2.

    Google BigQuery - https://cloud.google.com/bigquery.

  3. 3.

    Google Vertex AI Workbench - https://cloud.google.com/vertex-ai-workbench.

  4. 4.

    OpenAlex - https://openalex.org/.

  5. 5.

    ROR - https://ror.org/.

  6. 6.

    CSO - https://w3id.org/cso.

  7. 7.

    INDUSO - https://w3id.org/aida/#induso.

  8. 8.

    https://dbpedia.org/page/Samsung.

  9. 9.

    AIDA Knowledge Graph Download - https://w3id.org/aida.

  10. 10.

    Spacy - https://spacy.io/.

  11. 11.

    Specifically, we adopted the “en_core_web_sm” model.

  12. 12.

    https://www.sbert.net/docs/pretrained_models.html.

  13. 13.

    https://www.sbert.net/.

  14. 14.

    https://huggingface.co/distilbert-base-cased-distilled-squad.

  15. 15.

    https://huggingface.co/sshleifer/distilbart-cnn-12-6.

  16. 16.

    AIDA-Bot 2.0 evaluation data - https://w3id.org/aida/downloads#evaluation.

  17. 17.

    SUS Questionnaire Questions: https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html.

  18. 18.

    Interpreting a SUS score - https://measuringu.com/interpret-sus-score/.

  19. 19.

    With the notation \(\textit{X}\pm \textit{Y}\), we specify that X is the average score and Y the standard deviation.

  20. 20.

    SN Insights - https://sn-insights.dimensions.ai/.

  21. 21.

    Scite - https://scite.ai/.

  22. 22.

    Elicit - https://elicit.org/.

  23. 23.

    CoreGPT - https://tinyurl.com/mvrk2z4x.

References

  1. Expert System for Question Answering on Anomalous Events and Mitigation Strategies Using Bidirectional Transformers and Knowledge Graphs, Abu Dhabi International Petroleum Exhibition and Conference, vol. Day 3 Wed, 02 November 2022 (2022). https://doi.org/10.2118/211855-MS, d031S084R002

  2. Angioni, S., Salatino, A., Osborne, F., Birukou, A., Recupero, D.R., Motta, E.: Leveraging knowledge graph technologies to assess journals and conferences at springer nature. In: Sattler, U., et al. (eds.) The Semantic Web - ISWC 2022. LNCS, pp. 735–752. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19433-7_42

    Chapter  Google Scholar 

  3. Angioni, S., Salatino, A., Osborne, F., Recupero, D.R., Motta, E.: Aida: a knowledge graph about research dynamics in academia and industry. Quant. Sci. Stud. 2(4), 1356–1398 (2021)

    Article  Google Scholar 

  4. Angioni, S., Salatino, A.A., Osborne, F., Recupero, D.R., Motta, E.: Integrating knowledge graphs for analysing academia and industry dynamics. In: Bellatreche, L., et al. (eds.) TPDL/ADBIS -2020. CCIS, vol. 1260, pp. 219–225. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55814-7_18

    Chapter  Google Scholar 

  5. Athreya, R.G., Ngonga Ngomo, A.C., Usbeck, R.: Enhancing community interactions with data-driven chatbots-the dbpedia chatbot. In: Companion Proceedings of the The Web Conference 2018, Lyon, France, pp. 143–146 (2018)

    Google Scholar 

  6. Auer, S., et al.: The SciQA scientific question answering benchmark for scholarly knowledge. Sci. Rep. 13(1), 7240 (2023). https://doi.org/10.1038/s41598-023-33607-z

    Article  Google Scholar 

  7. Bavaresco, R., et al.: Conversational agents in business: a systematic literature review and future research directions. Comput. Sci. Rev. 36, 100239 (2020)

    Article  Google Scholar 

  8. Bharti, U., Bajaj, D., Batra, H., Lalit, S., Lalit, S., Gangwani, A.: Medbot: conversational artificial intelligence powered chatbot for delivering tele-health after covid-19. In: 2020 5th International Conference on Communication and Electronics Systems (ICCES), Budva, Montenegro, pp. 870–875 (2020). https://doi.org/10.1109/ICCES48766.2020.9137944

  9. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, New York, NY, USA, pp. 1247–1250. Association for Computing Machinery (2008). https://doi.org/10.1145/1376616.1376746

  10. Brown, T., et al.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

  11. Chen, H., Liu, X., Yin, D., Tang, J.: A survey on dialogue systems: recent advances and new frontiers. SIGKDD Explor. Newsl. 19(2), 25–35 (2017). https://doi.org/10.1145/3166054.3166058

    Article  Google Scholar 

  12. Cui, L., Huang, S., Wei, F., Tan, C., Duan, C., Zhou, M.: SuperAgent: a customer service chatbot for E-commerce websites. In: Proceedings of ACL 2017, System Demonstrations, Vancouver, Canada, pp. 97–102. Association for Computational Linguistics (2017). https://aclanthology.org/P17-4017

  13. Dessí, D., Osborne, F., Recupero, D.R., Buscaldi, D., Motta, E.: Scicero: a deep learning and NLP approach for generating scientific knowledge graphs in the computer science domain. Knowl.-Based Syst. 258, 109945 (2022)

    Article  Google Scholar 

  14. Divya, S., Indumathi, V., Ishwarya, S., Priyasankari, M., Devi, S.K.: A self-diagnosis medical chatbot using artificial intelligence. J. Web Dev. Web Des. 3(1), 1–7 (2018)

    Google Scholar 

  15. Fensel, D., et al.: Knowledge graphs methodology, tools and selected use cases (2020). https://lib.ugent.be/catalog/ebk01:4100000010122122

  16. Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngonga Ngomo, A.C.: Survey on challenges of question answering in the semantic web. Semantic Web 8(6), 895–920 (2017)

    Article  Google Scholar 

  17. Hsu, P., Zhao, J., Liao, K., Liu, T., Wang, C.: Allergybot: a chatbot technology intervention for young adults with food allergies dining out. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, Denver, Colorado, pp. 74–79 (2017)

    Google Scholar 

  18. Laranjo, L., et al.: Conversational agents in healthcare: a systematic review. J. Am. Med. Inform. Assoc. 25(9), 1248–1258 (2018)

    Article  Google Scholar 

  19. Li, L., Lee, K.Y., Emokpae, E., Yang, S.B.: What makes you continuously use chatbot services? evidence from Chinese online travel agencies. Electron. Mark. (2021). https://doi.org/10.1007/s12525-020-00454-z

    Article  Google Scholar 

  20. Mariani, M.M., Hashemi, N., Wirtz, J.: Artificial intelligence empowered conversational agents: a systematic literature review and research agenda. J. Bus. Res. 161, 113838 (2023). https://doi.org/10.1016/j.jbusres.2023.113838

    Article  Google Scholar 

  21. Meloni, A., Angioni, S., Salatino, A., Osborne, F., Reforgiato Recupero, D.: Aida-bot: a conversational agent to explore scholarly knowledge graphs. CEUR-WS (2021). https://ceur-ws.org/Vol-2980/paper310.pdf

  22. Meloni, A., Angioni, S., Salatino, A.A., Osborne, F., Recupero, D.R., Motta, E.: Integrating conversational agents and knowledge graphs within the scholarly domain. IEEE Access 11, 22468–22489 (2023). https://doi.org/10.1109/ACCESS.2023.3253388

    Article  Google Scholar 

  23. Mohan, S., Chowdhary, C.: An AI-based chatbot using deep learning. In: Intelligent Systems: Advances in Biometric Systems, Soft Computing, Image Processing, and Data Analytics, chap. 12, London, UK, pp. 231–242. Apple Academic Press (2019). https://doi.org/10.1201/9780429265020-12

  24. Mora-Cantallops, M., Sánchez-Alonso, S., García-Barriocanal, E.: A systematic literature review on wikidata. Data Technologies and Applications (2019)

    Google Scholar 

  25. Nayyeri, M., et al.: Trans4e: link prediction on scholarly knowledge graphs. Neurocomputing 461, 530–542 (2021)

    Article  Google Scholar 

  26. Ni, L., Lu, C., Liu, N., Liu, J.: MANDY: towards a smart primary care chatbot application. In: Chen, J., Theeramunkong, T., Supnithi, T., Tang, X. (eds.) KSS 2017. CCIS, vol. 780, pp. 38–52. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6989-5_4

    Chapter  Google Scholar 

  27. Oh, K.J., Lee, D., Ko, B., Choi, H.J.: A chatbot for psychiatric counseling in mental healthcare service based on emotional dialogue analysis and sentence generation. In: 2017 18th IEEE International Conference on Mobile Data Management (MDM), KAIST, Daejeon, pp. 371–375. IEEE (2017)

    Google Scholar 

  28. Okonkwo, C.W., Ade-Ibijola, A.: Chatbots applications in education: a systematic review. Comput. Educ. Artif. Intell. 2, 100033 (2021). https://doi.org/10.1016/j.caeai.2021.100033

    Article  Google Scholar 

  29. OpenAI: Gpt-4 technical report (2023)

    Google Scholar 

  30. Osborne, F., Motta, E.: Pragmatic ontology evolution: reconciling user requirements and application performance. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 495–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_29

    Chapter  Google Scholar 

  31. Pang, R.Y., et al.: QuALITY: question answering with long input texts, yes! In: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Seattle, United States, pp. 5336–5358. Association for Computational Linguistics (2022). https://doi.org/10.18653/v1/2022.naacl-main.391, https://aclanthology.org/2022.naacl-main.391

  32. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semantic web 8(3), 489–508 (2017)

    Article  Google Scholar 

  33. Peng, C., Xia, F., Naseriparsa, M., Osborne, F.: Knowledge graphs: opportunities and challenges. Artif. Intell. Rev. 56, 1–32 (2023)

    Article  Google Scholar 

  34. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners (2019)

    Google Scholar 

  35. Ranoliya, B.R., Raghuwanshi, N., Singh, S.: Chatbot for university related FAQs. In: 2017 International Conference on Advances in Computing. Communications and Informatics (ICACCI), Manipal, India, pp. 1525–1530. IEEE (2017)

    Google Scholar 

  36. Rastogi, A., Zang, X., Sunkara, S., Gupta, R., Khaitan, P.: Towards scalable multi-domain conversational agents: the schema-guided dialogue dataset. In: Proceedings of the AAAI Conference on Artificial Intelligence, New York, USA, vol. 34, pp. 8689–8696 (2020)

    Google Scholar 

  37. Reimers, N., Gurevych, I.: Sentence-Bert: sentence embeddings using SIAMESE Bert-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2019). https://arxiv.org/abs/1908.10084

  38. Roller, S., et al.: Recipes for building an open-domain chatbot. In: EACL. Online (2021)

    Google Scholar 

  39. Rooein, D., Bianchini, D., Leotta, F., Mecella, M., Paolini, P., Pernici, B.: achat-wf: generating conversational agents for teaching business process models. Softw. Syst. Model. (2021). https://doi.org/10.1007/s10270-021-00925-7

    Article  Google Scholar 

  40. Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Disc. Data (TKDD) 15(2), 1–49 (2021)

    Article  Google Scholar 

  41. Salatino, A.A., Osborne, F., Birukou, A., Motta, E.: Improving editorial workflow and metadata quality at springer nature. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 507–525. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_31

    Chapter  Google Scholar 

  42. Salatino, A.A., Osborne, F., Motta, E.: Augur: Forecasting the emergence of new research topics. In: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries. JCDL 2018, pp. 303–312, New York, NY, USA. ACM (2018). https://doi.org/10.1145/3197026.3197052

  43. Salatino, A.A., Osborne, F., Thanapalasingam, T., Motta, E.: The CSO classifier: ontology-driven detection of research topics in scholarly articles. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds.) TPDL 2019. LNCS, vol. 11799, pp. 296–311. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30760-8_26

    Chapter  Google Scholar 

  44. Salatino, A.A., Thanapalasingam, T., Mannocci, A., Osborne, F., Motta, E.: The computer science ontology: a large-scale taxonomy of research areas. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 187–205. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_12

    Chapter  Google Scholar 

  45. Sarosa, M., Kusumawardani, M., Suyono, A., Wijaya, M.H.: Developing a social media-based chatbot for English learning. IOP Conf. Ser. Materials Sci. Eng. 732(1), 012074 (2020). https://doi.org/10.1088/1757-899x/732/1/012074

  46. Singh, J., Joesph, M.H., Jabbar, K.B.A.: Rule-based chabot for student enquiries. J. Phys. Conf. Ser. 1228(1), 012060 (2019). https://doi.org/10.1088/1742-6596/1228/1/012060

  47. Stasaski, K., Hearst, M.: Semantic diversity in dialogue with natural language inference. In: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, United States, pp. 85–98. Association for Computational Linguistics, Seattle (2022). https://doi.org/10.18653/v1/2022.naacl-main.6 , https://aclanthology.org/2022.naacl-main.6

  48. Thanapalasingam, T., Osborne, F., Birukou, A., Motta, E.: Ontology-based recommendation of editorial products. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 341–358. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_21

    Chapter  Google Scholar 

  49. Touvron, H., et al.: Llama: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)

  50. Vaira, L., Bochicchio, M.A., Conte, M., Casaluci, F.M., Melpignano, A.: Mamabot: a system based on ml and NLP for supporting women and families during pregnancy. In: Proceedings of the 22nd International Database Engineering & Applications Symposium, Villa San Giovanni, Italy, pp. 273–277 (2018)

    Google Scholar 

  51. Zhu, Q., et al.: Collective knowledge graph multi-type entity alignment. In: The Web Conference 2020 (2020). https://www.amazon.science/publications/collective-knowledge-graph-multi-type-entity-alignment

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Reforgiato Recupero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meloni, A. et al. (2023). AIDA-Bot 2.0: Enhancing Conversational Agents with Knowledge Graphs for Analysing the Research Landscape. In: Payne, T.R., et al. The Semantic Web – ISWC 2023. ISWC 2023. Lecture Notes in Computer Science, vol 14266. Springer, Cham. https://doi.org/10.1007/978-3-031-47243-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47243-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47242-8

  • Online ISBN: 978-3-031-47243-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics