Abstract
The Similarity Join (SJ) has become one of the most popular and valuable data processing operators in analyzing large amounts of data. Various types of similarity join operators have been effectively used in multiple scenarios. However, these operators usually generate a large output size and many similar output pairs that represent almost the same information. In previous work, a new operator called Diversity Similarity Join (DSJ) has been proposed to address these issues. DSJ generates a smaller scale output and more meaningful and diverse result pairs. This operator, however, was proposed as a single node operator crucially limiting its scalability properties. In this paper, we propose the Distributed Diversity Similarity Join (D2SJ) operator, an approach that enables SJ diversification on big datasets. We present the design guidelines and implementation details on Apache Spark, a popular big data processing framework. Our experimental results with real-world high-dimensional data show that the proposed operator has excellent performance and scalability properties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Böhm, C., Braunmüller, B., Krebs, F., Kriegel, H.-P.: Epsilon grid order: an algorithm for the similarity join on massive high-dimensional data. In: SIGMOD (2001)
Santos, L.F.D., Carvalho, L.O., Oliveira, W.D., Traina, A.J.M., Traina Jr., C.: Diversity in similarity joins. In: Amato, G., Connor, R., Falchi, F., Gennaro, C. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 42–53. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25087-8_4
Apache. Spark. https://spark.apache.org/
SimCloud Research Team. D2SJ Source Code. https://ysilva.cs.luc.edu/SimCloud/downloads.html
Dohnal, V., Gennaro, C., Zezula, P.: Similarity join in metric spaces using ED-Index. In: Mařík, V., Retschitzegger, W., Štěpánková, O. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 484–493. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45227-0_48
Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: Similarity join in metric spaces. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 452–467. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36618-0_32
Jacox, E.H., Samet, H.: Metric space similarity joins. ACM Trans. Database Syst. 33(2), 1–38 (2008). https://doi.org/10.1145/1366102.1366104
Silva, Y.N., Reed, J.M., Tsosie, L.M.: MapReduce-based similarity join for metric spaces. In: VLDB/Cloud-I (2012)
Hjaltason, G.R., Samet, H.: Incremental distance join algorithms for spatial databases. In: SIGMOD (1998)
Böhm, C., Krebs, F.: The k-nearest neighbour join: turbo charging the KDD process. KAIS 6, 728–749 (2004)
Apache. Hadoop. https://hadoop.apache.org/
Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: OSDI (2004)
Silva, Y.N., Reed, J., Brown, K., Wadsworth, A., Rong, C.: An experimental survey of MapReduce-based similarity joins. In: Amsaleg, L., Houle, M.E., Schubert, E. (eds.) SISAP 2016. LNCS, vol. 9939, pp. 181–195. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46759-7_14
Fier, F., Augsten, N., Bouros, P., Leser, U., Freytag, J.-C.: Set similarity joins on MapReduce: an experimental survey. Proc. VLDB Endow. 11(10), 1110–1122 (2018). https://doi.org/10.14778/3231751.3231760
Afrati, F.N., Sarma, A.D., Menestrina, D., Parameswaran, A., Ullman, J.D.: Fuzzy joins using MapReduce. In: ICDE (2012)
Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using MapReduce. In: SIGMOD (2010)
Metwally, A., Faloutsos, C.: V-SMART-join: a scalable MapReduce framework for all-pair similarity joins of multisets and vectors. Proc. VLDB Endow. 5(8), 704–715 (2012). https://doi.org/10.14778/2212351.2212353
Silva, Y.N., Reed, J.M.: Exploiting MapReduce-based similarity joins. In: SIGMOD (2012)
Okcan, A., Riedewald, M.: Processing theta-joins using MapReduce. In: SIGMOD (2011)
Drosou, M., Pitoura, E.: DisC diversity: result diversification based on dissimilarity and coverage. In: CIKM (2010)
Vieira, M.R., et al.: On query result diversification. Inf. Syst. 42, 57–77 (2014)
Ge, X., Chrysanthis, P.K.: PrefDiv: efficient algorithms for effective top-k result diversification. In: EDBT (2020)
Silva, Y.N., Sandoval, M., Prado, D., Wallace, X., Rong, C.: Similarity grouping in big data systems. In: Amato, G., Gennaro, C., Oria, V., Radovanović, M. (eds.) SISAP 2019. LNCS, vol. 11807, pp. 212–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32047-8_19
Bolettieri, P., et al.: CoPhIR: A Test Collection for Content-Based Image Retrieval. arXiv:0905.4627 (2009)
Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces (survey article). TODS 28, 517–580 (2003)
Acknowledgments
This project was supported by an award from the Google Cloud Research program. The authors would like to thank Steven Hu, Timothy Raymer, and Steven Anderson for their contributions in the preliminary stages of this project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Silva, Y.N., Martinez, J., Castro Cea, P., Razente, H., Nardini Barioni, M.C. (2023). Diversity Similarity Join for Big Data. In: Pedreira, O., Estivill-Castro, V. (eds) Similarity Search and Applications. SISAP 2023. Lecture Notes in Computer Science, vol 14289. Springer, Cham. https://doi.org/10.1007/978-3-031-46994-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-46994-7_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46993-0
Online ISBN: 978-3-031-46994-7
eBook Packages: Computer ScienceComputer Science (R0)