Nothing Special   »   [go: up one dir, main page]

Skip to main content

Diversity Similarity Join for Big Data

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14289))

Included in the following conference series:

  • 410 Accesses

Abstract

The Similarity Join (SJ) has become one of the most popular and valuable data processing operators in analyzing large amounts of data. Various types of similarity join operators have been effectively used in multiple scenarios. However, these operators usually generate a large output size and many similar output pairs that represent almost the same information. In previous work, a new operator called Diversity Similarity Join (DSJ) has been proposed to address these issues. DSJ generates a smaller scale output and more meaningful and diverse result pairs. This operator, however, was proposed as a single node operator crucially limiting its scalability properties. In this paper, we propose the Distributed Diversity Similarity Join (D2SJ) operator, an approach that enables SJ diversification on big datasets. We present the design guidelines and implementation details on Apache Spark, a popular big data processing framework. Our experimental results with real-world high-dimensional data show that the proposed operator has excellent performance and scalability properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Böhm, C., Braunmüller, B., Krebs, F., Kriegel, H.-P.: Epsilon grid order: an algorithm for the similarity join on massive high-dimensional data. In: SIGMOD (2001)

    Google Scholar 

  2. Santos, L.F.D., Carvalho, L.O., Oliveira, W.D., Traina, A.J.M., Traina Jr., C.: Diversity in similarity joins. In: Amato, G., Connor, R., Falchi, F., Gennaro, C. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 42–53. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25087-8_4

  3. Apache. Spark. https://spark.apache.org/

  4. SimCloud Research Team. D2SJ Source Code. https://ysilva.cs.luc.edu/SimCloud/downloads.html

  5. Dohnal, V., Gennaro, C., Zezula, P.: Similarity join in metric spaces using ED-Index. In: Mařík, V., Retschitzegger, W., Štěpánková, O. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 484–493. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45227-0_48

    Chapter  Google Scholar 

  6. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: Similarity join in metric spaces. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 452–467. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36618-0_32

    Chapter  MATH  Google Scholar 

  7. Jacox, E.H., Samet, H.: Metric space similarity joins. ACM Trans. Database Syst. 33(2), 1–38 (2008). https://doi.org/10.1145/1366102.1366104

    Article  Google Scholar 

  8. Silva, Y.N., Reed, J.M., Tsosie, L.M.: MapReduce-based similarity join for metric spaces. In: VLDB/Cloud-I (2012)

    Google Scholar 

  9. Hjaltason, G.R., Samet, H.: Incremental distance join algorithms for spatial databases. In: SIGMOD (1998)

    Google Scholar 

  10. Böhm, C., Krebs, F.: The k-nearest neighbour join: turbo charging the KDD process. KAIS 6, 728–749 (2004)

    Google Scholar 

  11. Apache. Hadoop. https://hadoop.apache.org/

  12. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: OSDI (2004)

    Google Scholar 

  13. Silva, Y.N., Reed, J., Brown, K., Wadsworth, A., Rong, C.: An experimental survey of MapReduce-based similarity joins. In: Amsaleg, L., Houle, M.E., Schubert, E. (eds.) SISAP 2016. LNCS, vol. 9939, pp. 181–195. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46759-7_14

    Chapter  Google Scholar 

  14. Fier, F., Augsten, N., Bouros, P., Leser, U., Freytag, J.-C.: Set similarity joins on MapReduce: an experimental survey. Proc. VLDB Endow. 11(10), 1110–1122 (2018). https://doi.org/10.14778/3231751.3231760

    Article  Google Scholar 

  15. Afrati, F.N., Sarma, A.D., Menestrina, D., Parameswaran, A., Ullman, J.D.: Fuzzy joins using MapReduce. In: ICDE (2012)

    Google Scholar 

  16. Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using MapReduce. In: SIGMOD (2010)

    Google Scholar 

  17. Metwally, A., Faloutsos, C.: V-SMART-join: a scalable MapReduce framework for all-pair similarity joins of multisets and vectors. Proc. VLDB Endow. 5(8), 704–715 (2012). https://doi.org/10.14778/2212351.2212353

    Article  Google Scholar 

  18. Silva, Y.N., Reed, J.M.: Exploiting MapReduce-based similarity joins. In: SIGMOD (2012)

    Google Scholar 

  19. Okcan, A., Riedewald, M.: Processing theta-joins using MapReduce. In: SIGMOD (2011)

    Google Scholar 

  20. Drosou, M., Pitoura, E.: DisC diversity: result diversification based on dissimilarity and coverage. In: CIKM (2010)

    Google Scholar 

  21. Vieira, M.R., et al.: On query result diversification. Inf. Syst. 42, 57–77 (2014)

    Google Scholar 

  22. Ge, X., Chrysanthis, P.K.: PrefDiv: efficient algorithms for effective top-k result diversification. In: EDBT (2020)

    Google Scholar 

  23. Silva, Y.N., Sandoval, M., Prado, D., Wallace, X., Rong, C.: Similarity grouping in big data systems. In: Amato, G., Gennaro, C., Oria, V., Radovanović, M. (eds.) SISAP 2019. LNCS, vol. 11807, pp. 212–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32047-8_19

    Chapter  Google Scholar 

  24. Bolettieri, P., et al.: CoPhIR: A Test Collection for Content-Based Image Retrieval. arXiv:0905.4627 (2009)

  25. Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces (survey article). TODS 28, 517–580 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by an award from the Google Cloud Research program. The authors would like to thank Steven Hu, Timothy Raymer, and Steven Anderson for their contributions in the preliminary stages of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasin N. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, Y.N., Martinez, J., Castro Cea, P., Razente, H., Nardini Barioni, M.C. (2023). Diversity Similarity Join for Big Data. In: Pedreira, O., Estivill-Castro, V. (eds) Similarity Search and Applications. SISAP 2023. Lecture Notes in Computer Science, vol 14289. Springer, Cham. https://doi.org/10.1007/978-3-031-46994-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46994-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46993-0

  • Online ISBN: 978-3-031-46994-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics