Abstract
The seminal work of Broder et al. [5] introduces the \(\textrm{minHash}\) algorithm that computes a low-dimensional sketch of high-dimensional binary data that closely approximates pairwise Jaccard similarity. Since its invention, \(\textrm{minHash}\) has been commonly used by practitioners in various big data applications. In many real-life scenarios, the data is dynamic and their feature sets evolve over time. We consider the case when features are dynamically inserted and deleted in the dataset. A naive solution to this problem is to repeatedly recompute \(\textrm{minHash}\) with respect to the updated dimension. However, this is an expensive task as it requires generating fresh random permutations. To the best of our knowledge, no systematic study of \(\textrm{minHash}\) is recorded in the context of dynamic insertion and deletion of features. In this work, we initiate this study and suggest algorithms that make the \(\textrm{minHash}\) sketches adaptable to the dynamic insertion and deletion of features. We show a rigorous theoretical analysis of our algorithms and complement it with supporting experiments on several real-world datasets. Empirically we observe a significant speed-up in the running time while simultaneously offering comparable performance with respect to running \(\textrm{minHash}\) from scratch. Our proposal is efficient, accurate, and easy to implement in practice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We note that binary vectors and sets give two equivalent representations of the same data object. Let the data elements be a subset of a fixed universe. In the corresponding binary representation, we generate a vector whose dimension is the size of the universe, where for each possible element of the universe, a feature position is designated. To represent a set into a binary vector, we label each element’s location with 1 if it is present in the set and 0 otherwise.
- 2.
These hash functions are called universal hash functions (see Chapter 11 of [10].
- 3.
References
Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 131–140. Association for Computing Machinery , New York, NY, USA (2007)
Bera, D., Pratap, R.: Frequent-itemset mining using locality-sensitive hashing. In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016. LNCS, vol. 9797, pp. 143–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42634-1_12
Broder, A.Z.: On the resemblance and containment of documents. In: . Proceedings of Compression and Complexity of Sequences 1997, pp. 21–29. IEEE (1997)
Broder, A.Z.: Identifying and filtering near-duplicate documents. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 1–10. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45123-4_1
Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent permutations (extended abstract). In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC 1998, pp. 327–336. Association for Computing Machinery, New York, NY, USA (1998)
Broder, A.Z., Glassman, S.C., Nelson, C.G., Manasse, M.S., Zweig, G.G.: Method for clustering closely resembling data objects, September 12 2000. US Patent 6,119,124
Christiani, T., Pagh, R.: Set similarity search beyond minhash. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pp. 1094–1107. Association for Computing Machinery, New York, NY, USA, (2017)
Christiani, T., Pagh, R., Sivertsen, J.: Scalable and robust set similarity join. In: 34th IEEE International Conference on Data Engineering, ICDE 2018, Paris, France, April 16–19, 2018, pp. 1240–1243. IEEE Computer Society (2018)
Chum, O., Philbin, J., Zisserman, A.: Near duplicate image detection: min-hash and TF-IDF weighting. In: Everingham, M., Needham, C.J., Fraile, R. (Eds.), Proceedings of the British Machine Vision Conference 2008, Leeds, UK, September 2008, pp. 1–10. British Machine Vision Association (2008)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)
Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In WWW 2007: Proceedings of the 16th international conference on World Wide Web, pp. 271–280. ACM, New York, NY, USA (2007)
Henzinger, M.: Finding near-duplicate web pages: a large-scale evaluation of algorithms. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2006, pp. 284–291. Association for Computing Machinery, New York, NY, USA (2006)
Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23–26, 1998, pp. 604–613 (1998)
Li, P., König, A.C.: Theory and applications of b-bit minwise hashing. Commun. ACM 54(8), 101–109 (2011)
Li, P., Owen, A.B., Zhang, C.-H.: One permutation hashing. In: Bartlett, P.L., Pereira, F.C.N., Burges, Léon Bottou, C.J.C., Weinberger, K.Q., (Eds.), Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3–6, 2012, Lake Tahoe, Nevada, United States, pp. 3122–3130 (2012)
Li, P., Shrivastava, A., König, A.C.: B-bit minwise hashing in practice. In: Proceedings of the 5th Asia-Pacific Symposium on Internetware, Internetware 2013, New York, NY, USA. Association for Computing Machinery (2013)
Lichman, M.: UCI machine learning repository (2013)
Singh Manku, G., Jain, A., Sarma, A.D.: Detecting near-duplicates for web crawling. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 141–150. Association for Computing Machinery, New York, NY, USA (2007)
McCauley, S., Mikkelsen, J.W., Pagh, R.: Set similarity search for skewed data. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, SIGMOD/PODS 2018, pap.63–74, New York, NY, USA, 2018. Association for Computing Machinery (2018)
Mitzenmacher, M., Pagh, R. Pham, ,N.: Efficient estimation for high similarities using odd sketches. In: Proceedings of the 23rd International Conference on World Wide Web, WWW 2014, p–118. Association for Computing Machinery, New York, NY, USA, 2014
Pratap,R ., Kulkarni, R.: Minwise-independent permutations with insertion and deletion of features. arxiv.org/abs/2308.11240 (2023)
Shrivastava, A., Li, P.: Improved densification of one permutation hashing. In: Proceedings of the Thirtieth Conference On Uncertainty In Artificial Intelligence, UAI 2014, pp. 732–741. AUAI Press, Arlington, Virginia, USA, (2014)
Sundaram, N., et al.: Streaming similarity search over one billion tweets using parallel locality-sensitive hashing. Proc. VLDB Endow. 6(14), 1930–1941 (2013)
Acknowledgements
We sincerely thank Biswadeep Sen for providing their valuable input on the initial draft of the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pratap, R., Kulkarni, R. (2023). Minwise-Independent Permutations with Insertion and Deletion of Features. In: Pedreira, O., Estivill-Castro, V. (eds) Similarity Search and Applications. SISAP 2023. Lecture Notes in Computer Science, vol 14289. Springer, Cham. https://doi.org/10.1007/978-3-031-46994-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-46994-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46993-0
Online ISBN: 978-3-031-46994-7
eBook Packages: Computer ScienceComputer Science (R0)