Abstract
Blood glucose prediction is important for managing diabetes, preventing hypoglycemia, optimizing insulin therapy, and improving the quality of life for people with diabetes. Because of the continuous glucose monitoring technique, the prediction models can be trained on the patient’s historical blood glucose data in time series. In order to learn the seasonality and trend of the blood glucose data, we introduce a seasonal trend integrated predictor (STIP). Especially for the seasonality, the local and global patterns are captured by embedding and convolutions. The experimental results on different prediction methods indicate the performance of the introduced method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Doherty, S.T., Greaves, S.P.: Time-series analysis of continuously monitored blood glucose: the impacts of geographic and daily lifestyle factors. J. Diabetes Res. 2015, 1–6 (2015)
Hidalgo, J.I., Colmenar, J.M., Kronberger, G., Winkler, S.M., Garnica, O., Lanchares, J.: Data based prediction of blood glucose concentrations using evolutionary methods. J. Med. Syst. 41(9), 1–20 (2017)
Klonoff, D.C., et al.: The surveillance error grid. J. Diabetes Sci. Technol. 8(4), 658–672 (2014)
Li, J., Fernando, C.: Smartphone-based personalized blood glucose prediction. ICT Express 2(4), 150–154 (2016)
Li, K., Liu, C., Zhu, T., Herrero, P., Georgiou, P.: Glunet: a deep learning framework for accurate glucose forecasting. IEEE J. Biomed. Health Inform. 24(2), 414–423 (2019)
M, P., S, P., A, B., A., D.G.: A comparison among three maximal mathematical models of the glucose-insulin system. PloS one 16(9), e0257789 (2021)
Man, C.D., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., Cobelli, C.: The uva/padova type 1 diabetes simulator: new features. J. Diabetes Sci. Technol. 8(1), 26–34 (2014)
Marling, C., Bunescu, R.: The OhioT1DM dataset for blood glucose level prediction: Update 2020. In: CEUR workshop proceedings. vol. 2675, p. 71. NIH Public Access (2020)
Marling, C., Bunescu, R.C.: The ohiot1dm dataset for blood glucose level prediction. In: KHD@ IJCAI (2018)
Marín-Peñalver, J., Martín-Timón, I., Sevillano-Collantes, C., Del Cañizo-Gómez, F.: Update on the treatment of type 2 diabetes mellitus. World J. Diabetes 7(17), 354–95 (2016)
Novara, C., Pour, N.M., Vincent, T., Grassi, G.: A nonlinear blind identification approach to modeling of diabetic patients. IEEE Trans. Control Syst. Technol. 24(3), 1092–1100 (2015)
Oviedo, S., Vehi, J., Calm, R., Armengol, J.: A review of personalized blood glucose prediction strategies for t1dm patients. Int. J. Num. Methods Biomed. Eng. 33(6), e2833 (2017)
Q. Zhao, J. Zhu, X.S.e.a.: Chinese diabetes datasets for data-driven machine learning. Sci Data 10(35) (2023)
Reymann, M.P., Dorschky, E., Groh, B.H., Martindale, C., Blank, P., Eskofier, B.M.: Blood glucose level prediction based on support vector regression using mobile platforms. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2990–2993. IEEE (2016)
Sun, H., et al.: IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022)
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems 27 (2014)
Vfa, B., Nmga, B., Npa, B., Im, C.: Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction: a systematic literature review. Artif. Intell. Med. 118, 102120 (2021)
Visentin, R., Campos-Náñez, E., Schiavon, M., Lv, D., Vettoretti, M., Breton, M., Kovatchev, B.P., Dalla Man, C., Cobelli, C.: The UVA/padova type 1 diabetes simulator goes from single meal to single day. J. Diabetes Sci. Technol. 12(2), 273–281 (2018)
Wang, H., Peng, J., Huang, F., Wang, J., Chen, J., Xiao, Y.: MICN: multi-scale local and global context modeling for long-term series forecasting (2023)
Woldaregay, A.Z., et al.: Data-driven modeling and prediction of blood glucose dynamics: machine learning applications in type 1 diabetes. Artif. Intell. Med. 98, 109–134 (2019)
Yang, J., Li, L., Shi, Y., Xie, X.: An arima model with adaptive orders for predicting blood glucose concentrations and hypoglycemia. IEEE J. Biomed. Health Inform. 23(3), 1251–1260 (2018)
Yang, T., et al.: Multi-scale long short-term memory network with multi-lag structure for blood glucose prediction. In: KDH@ ECAI, pp. 136–140 (2020)
Zaidi, S.M.A., Chandola, V., Ibrahim, M., Romanski, B., Mastrandrea, L.D., Singh, T.: Multi-step ahead predictive model for blood glucose concentrations of type-1 diabetic patients. Sci. Rep. 11(1), 24332 (2021)
Zhou, T., Ma, Z., Wen, Q., Xue Wang, L.S., Jin, R.: Fedformer: frequency enhanced decomposed transformer for long-term series forecastings. In: International Conference on Machine Learning (2022)
Acknowledgement
This work is partially supported by National Key R &D Program of China (No. 2022YFE0208000, 2021YFE204500, 2021YFC3340601), National Natural Science Foundation of China (No. 61972286), the Shanghai Science and Technology Development Funds (No. 22410713200, 20ZR1460500), the Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100), and Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rao, W. et al. (2023). STIP: A Seasonal Trend Integrated Predictor for Blood Glucose Level in Time Series. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14180. Springer, Cham. https://doi.org/10.1007/978-3-031-46677-9_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-46677-9_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46676-2
Online ISBN: 978-3-031-46677-9
eBook Packages: Computer ScienceComputer Science (R0)