Nothing Special   »   [go: up one dir, main page]

Skip to main content

STIP: A Seasonal Trend Integrated Predictor for Blood Glucose Level in Time Series

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14180))

Included in the following conference series:

  • 811 Accesses

Abstract

Blood glucose prediction is important for managing diabetes, preventing hypoglycemia, optimizing insulin therapy, and improving the quality of life for people with diabetes. Because of the continuous glucose monitoring technique, the prediction models can be trained on the patient’s historical blood glucose data in time series. In order to learn the seasonality and trend of the blood glucose data, we introduce a seasonal trend integrated predictor (STIP). Especially for the seasonality, the local and global patterns are captured by embedding and convolutions. The experimental results on different prediction methods indicate the performance of the introduced method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  2. Doherty, S.T., Greaves, S.P.: Time-series analysis of continuously monitored blood glucose: the impacts of geographic and daily lifestyle factors. J. Diabetes Res. 2015, 1–6 (2015)

    Article  Google Scholar 

  3. Hidalgo, J.I., Colmenar, J.M., Kronberger, G., Winkler, S.M., Garnica, O., Lanchares, J.: Data based prediction of blood glucose concentrations using evolutionary methods. J. Med. Syst. 41(9), 1–20 (2017)

    Article  Google Scholar 

  4. Klonoff, D.C., et al.: The surveillance error grid. J. Diabetes Sci. Technol. 8(4), 658–672 (2014)

    Google Scholar 

  5. Li, J., Fernando, C.: Smartphone-based personalized blood glucose prediction. ICT Express 2(4), 150–154 (2016)

    Article  Google Scholar 

  6. Li, K., Liu, C., Zhu, T., Herrero, P., Georgiou, P.: Glunet: a deep learning framework for accurate glucose forecasting. IEEE J. Biomed. Health Inform. 24(2), 414–423 (2019)

    Article  Google Scholar 

  7. M, P., S, P., A, B., A., D.G.: A comparison among three maximal mathematical models of the glucose-insulin system. PloS one 16(9), e0257789 (2021)

    Google Scholar 

  8. Man, C.D., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., Cobelli, C.: The uva/padova type 1 diabetes simulator: new features. J. Diabetes Sci. Technol. 8(1), 26–34 (2014)

    Article  Google Scholar 

  9. Marling, C., Bunescu, R.: The OhioT1DM dataset for blood glucose level prediction: Update 2020. In: CEUR workshop proceedings. vol. 2675, p. 71. NIH Public Access (2020)

    Google Scholar 

  10. Marling, C., Bunescu, R.C.: The ohiot1dm dataset for blood glucose level prediction. In: KHD@ IJCAI (2018)

    Google Scholar 

  11. Marín-Peñalver, J., Martín-Timón, I., Sevillano-Collantes, C., Del Cañizo-Gómez, F.: Update on the treatment of type 2 diabetes mellitus. World J. Diabetes 7(17), 354–95 (2016)

    Article  Google Scholar 

  12. Novara, C., Pour, N.M., Vincent, T., Grassi, G.: A nonlinear blind identification approach to modeling of diabetic patients. IEEE Trans. Control Syst. Technol. 24(3), 1092–1100 (2015)

    Article  Google Scholar 

  13. Oviedo, S., Vehi, J., Calm, R., Armengol, J.: A review of personalized blood glucose prediction strategies for t1dm patients. Int. J. Num. Methods Biomed. Eng. 33(6), e2833 (2017)

    Article  Google Scholar 

  14. Q. Zhao, J. Zhu, X.S.e.a.: Chinese diabetes datasets for data-driven machine learning. Sci Data 10(35) (2023)

    Google Scholar 

  15. Reymann, M.P., Dorschky, E., Groh, B.H., Martindale, C., Blank, P., Eskofier, B.M.: Blood glucose level prediction based on support vector regression using mobile platforms. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2990–2993. IEEE (2016)

    Google Scholar 

  16. Sun, H., et al.: IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022)

    Article  Google Scholar 

  17. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  18. Vfa, B., Nmga, B., Npa, B., Im, C.: Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction: a systematic literature review. Artif. Intell. Med. 118, 102120 (2021)

    Google Scholar 

  19. Visentin, R., Campos-Náñez, E., Schiavon, M., Lv, D., Vettoretti, M., Breton, M., Kovatchev, B.P., Dalla Man, C., Cobelli, C.: The UVA/padova type 1 diabetes simulator goes from single meal to single day. J. Diabetes Sci. Technol. 12(2), 273–281 (2018)

    Article  Google Scholar 

  20. Wang, H., Peng, J., Huang, F., Wang, J., Chen, J., Xiao, Y.: MICN: multi-scale local and global context modeling for long-term series forecasting (2023)

    Google Scholar 

  21. Woldaregay, A.Z., et al.: Data-driven modeling and prediction of blood glucose dynamics: machine learning applications in type 1 diabetes. Artif. Intell. Med. 98, 109–134 (2019)

    Article  Google Scholar 

  22. Yang, J., Li, L., Shi, Y., Xie, X.: An arima model with adaptive orders for predicting blood glucose concentrations and hypoglycemia. IEEE J. Biomed. Health Inform. 23(3), 1251–1260 (2018)

    Article  Google Scholar 

  23. Yang, T., et al.: Multi-scale long short-term memory network with multi-lag structure for blood glucose prediction. In: KDH@ ECAI, pp. 136–140 (2020)

    Google Scholar 

  24. Zaidi, S.M.A., Chandola, V., Ibrahim, M., Romanski, B., Mastrandrea, L.D., Singh, T.: Multi-step ahead predictive model for blood glucose concentrations of type-1 diabetic patients. Sci. Rep. 11(1), 24332 (2021)

    Article  Google Scholar 

  25. Zhou, T., Ma, Z., Wen, Q., Xue Wang, L.S., Jin, R.: Fedformer: frequency enhanced decomposed transformer for long-term series forecastings. In: International Conference on Machine Learning (2022)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by National Key R &D Program of China (No. 2022YFE0208000, 2021YFE204500, 2021YFC3340601), National Natural Science Foundation of China (No. 61972286), the Shanghai Science and Technology Development Funds (No. 22410713200, 20ZR1460500), the Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100), and Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangda Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rao, W. et al. (2023). STIP: A Seasonal Trend Integrated Predictor for Blood Glucose Level in Time Series. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14180. Springer, Cham. https://doi.org/10.1007/978-3-031-46677-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46677-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46676-2

  • Online ISBN: 978-3-031-46677-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics