Nothing Special   »   [go: up one dir, main page]

Skip to main content

Structure-Aware Point Cloud Completion

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14357))

Included in the following conference series:

  • 562 Accesses

Abstract

Structure plays a crucial role in point cloud completion. While many efforts have been made to recover geometric details of the target shape, it is non-trivial to recover global structures, especially when large areas are missing in the input partial point cloud. In this paper, we propose a novel point cloud completion approach named SAPCNet to reconstruct complete 3D shapes in a global structure-aware manner. To establish long-range dependencies within the global scope and efficiently capture the object structure, we propose a structure-aware enhancement module by introducing global attention to the seed point generation process. To explicitly enforce the category-specific structure recovery, we design a classification-supervised training strategy to enable the network to generate structures more consistent with object category properties. Moreover, we design a category-guided adaptive seed selection module to generate seed points in the first stage. A redundant structure elimination loss is also introduced to reduce the ill-posed generation of heavily missing regions in the incomplete point cloud. Qualitative and quantitative evaluations on the PCN dataset demonstrate that our method outperforms state-of-the-art completion approaches.

This work was supported by the National Natural Science Foundation of China under Grant 62076230.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)

  2. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to learning 3D surface generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 216–224 (2018)

    Google Scholar 

  3. Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: PCT: point cloud transformer. Comput. Visual Media 7, 187–199 (2021)

    Article  Google Scholar 

  4. Huang, Z., Yu, Y., Xu, J., Ni, F., Le, X.: PF-net: point fractal network for 3D point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7662–7670 (2020)

    Google Scholar 

  5. Liu, M., Sheng, L., Yang, S., Shao, J., Hu, S.M.: Morphing and sampling network for dense point cloud completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11596–11603 (2020)

    Google Scholar 

  6. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

  7. Tchapmi, L.P., Kosaraju, V., Rezatofighi, S.H., Reid, I., Savarese, S.: TopNet: structural point cloud decoder. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2019)

    Google Scholar 

  8. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  9. Wang, X., M.H.A.J., Lee, G.H.: Cascaded refinement network for point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2020

    Google Scholar 

  10. Wang, X., Ang, M.H., Lee, G.H.: Voxel-based network for shape completion by leveraging edge generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13189–13198 (2021)

    Google Scholar 

  11. Wen, X., Han, Z., Cao, Y.P., Wan, P., Zheng, W., Liu, Y.S.: Cycle4Completion: unpaired point cloud completion using cycle transformation with missing region coding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13075–13084 (2021)

    Google Scholar 

  12. Wen, X., Li, T., Han, Z., Liu, Y.S.: Point cloud completion by skip-attention network with hierarchical folding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1939–1948 (2020)

    Google Scholar 

  13. Wen, X., et al.: PMP-net: point cloud completion by learning multi-step point moving paths. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7443–7452 (2021)

    Google Scholar 

  14. Xiang, P., et al.: SnowflakeNet: point cloud completion by snowflake point deconvolution with skip-transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5499–5509 (October 2021)

    Google Scholar 

  15. Xie, H., Yao, H., Zhou, S., Mao, J., Zhang, S., Sun, W.: GRNet: gridding residual network for dense point cloud completion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 365–381. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_21

    Chapter  Google Scholar 

  16. Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 206–215 (2018)

    Google Scholar 

  17. Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., Zhou, J.: PoinTr: diverse point cloud completion with geometry-aware transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12498–12507 (2021)

    Google Scholar 

  18. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: point completion network. In: 3D Vision (3DV) (2018)

    Google Scholar 

  19. Zhang, W., Yan, Q., Xiao, C.: Detail preserved point cloud completion via separated feature aggregation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 512–528. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_31

    Chapter  Google Scholar 

  20. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)

    Google Scholar 

  21. Zhou, H., et al.: SeedFormer: patch seeds based point cloud completion with upsample transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13663, pp. 416–432. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20062-5_24

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, Z., Chen, X. (2023). Structure-Aware Point Cloud Completion. In: Lu, H., et al. Image and Graphics . ICIG 2023. Lecture Notes in Computer Science, vol 14357. Springer, Cham. https://doi.org/10.1007/978-3-031-46311-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46311-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46310-5

  • Online ISBN: 978-3-031-46311-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics