Nothing Special   »   [go: up one dir, main page]

Skip to main content

High Fidelity Virtual Try-On via Dual Branch Bottleneck Transformer

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14355))

Included in the following conference series:

  • 522 Accesses

Abstract

Image-based virtual try-on aims to fit an in-shop garment into a reference person image. To achieve this, a key step is garment warping, which aligns the target garment with the corresponding parts of the reference person and warps it reasonably. Previous methods typically adopt unweighted appearance flow estimation, which inherently makes it difficult to learn meaningful positions and generates unrealistic warping when the reference and the target have a large spatial difference. To overcome this limitation, a novel weighted appearance flow estimation strategy is proposed in this work. First, we extract the fusion latent vector of the reference and the target via Dual Branch Bottleneck Transformer. This enables us to take advantage of a latent vector to encode the global context. Then, we enhance the realism of appearance flow by performing sparse spatial sampling. This strengthens the communication of local information and applies constraints to warping. Experiment results on a popular virtual try-on benchmark show that our method outperforms the current state-of-the-art method in both quantitative and qualitative evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Obtained By Openpose, https://github.com/CMU-Perceptual-Computing-Lab/openpose.

References

  1. Zhao, F., Xie, Z., Kampffmeyer, M., et al.: M3D-VTON: a monocular-to-3D virtual try-on network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13239–13249 (2021)

    Google Scholar 

  2. Santesteban, I., Otaduy, M.A., Casas, D.: SNUG: self-supervised neural dynamic garments. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8140–8150 (2022)

    Google Scholar 

  3. Han, X., Wu, Z., Wu, Z., et al.: VITON: an image-based virtual try-on network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7543–7552 (2018)

    Google Scholar 

  4. Yang, H., Zhang, R., Guo, X., et al.: Towards photo-realistic virtual try-on by adaptively generating-preserving image content. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7850–7859 (2020)

    Google Scholar 

  5. Ge, Y., Song, Y., Zhang, R., et al.: Parser-free virtual try-on via distilling appearance flows. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8485–8493 (2021)

    Google Scholar 

  6. He, S., Song, Y.Z., Xiang, T.: Style-based global appearance flow for virtual try-on. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3470–3479 (2022)

    Google Scholar 

  7. Issenhuth, T., Mary, J., Calauzènes, C.: Do not mask what you do not need to mask: a parser-free virtual try-on. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XX. LNCS, vol. 12365, pp. 619–635. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_37

    Chapter  Google Scholar 

  8. Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part IV. LNCS, vol. 9908, pp. 286–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_18

    Chapter  Google Scholar 

  9. Liu, Y., Li, S., Wu, Y., et al.: UMT: unified multi-modal transformers for joint video moment retrieval and highlight detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3042–3051 (2022)

    Google Scholar 

  10. Srinivas, A., Lin, T.Y., Parmar, N., et al.: Bottleneck transformers for visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16519–16529 (2021)

    Google Scholar 

  11. Zhu, X., Su, W., Lu, L., et al.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

  12. Minar, M.R., Tuan, T.T., Ahn, H., et al.: CP-VTON+: clothing shape and texture preserving image-based virtual try-on. In: CVPR Workshops, vol. 3, pp. 10–14 (2020)

    Google Scholar 

  13. Yu, R., Wang, X., Xie, X.: VTNFP: an image-based virtual try-on network with body and clothing feature preservation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10511–10520 (2019)

    Google Scholar 

  14. Minar, M.R., Ahn, H.: CloTH-VTON: clothing three-dimensional reconstruction for hybrid image-based virtual try-on. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  15. Chopra, A., Jain, R., Hemani, M., et al.: ZFlow: gated appearance flow-based virtual try-on with 3d priors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5433–5442 (2021)

    Google Scholar 

  16. Bai, S., Zhou, H., Li, Z.: Single stage virtual try-on via deformable attention flows. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XV. LNCS, vol. 13675, pp. 409–425. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19784-0_24

    Chapter  Google Scholar 

  17. Han, X., Hu, X., Huang, W., et al.: ClothFlow: a flow-based model for clothed person generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10471–10480 (2019)

    Google Scholar 

  18. AlBahar, B., Lu, J., Yang, J., et al.: Pose with Style: detail-preserving pose-guided image synthesis with conditional styleGAN. ACM Trans. Graph. (TOG) 40(6), 1–11 (2021)

    Article  Google Scholar 

  19. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part I. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  20. Lin, T.Y., Dollár, P., Girshick, R., et al.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  21. Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  22. Heusel, M., Ramsauer, H., Unterthiner, T., et al.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

Download references

Acknowledgment

This research is supported by the National Key R &D Program of China (No. 2021YFF0900900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Zheng, G., Zhou, F., Su, Z., Lin, G. (2023). High Fidelity Virtual Try-On via Dual Branch Bottleneck Transformer. In: Lu, H., et al. Image and Graphics. ICIG 2023. Lecture Notes in Computer Science, vol 14355. Springer, Cham. https://doi.org/10.1007/978-3-031-46305-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46305-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46304-4

  • Online ISBN: 978-3-031-46305-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics