Nothing Special   »   [go: up one dir, main page]

Skip to main content

\(\mu \)XL: Explainable Lead Generation with Microservices and Hypothetical Answers

  • Conference paper
  • First Online:
Service-Oriented and Cloud Computing (ESOCC 2023)

Abstract

Lead generation refers to the identification of potential topics (the ‘leads’) of importance for journalists to report on. In this paper we present a new lead generation tool based on a microservice architecture, which includes a component of explainable AI. The lead generation tool collects and stores historical and real-time data from a web source, like Google Trends, and generates current and future leads. These leads are produced by an engine for hypothetical reasoning based on logical rules, which is a novel implementation of a recent theory. Finally, the leads are displayed on a web interface for end users, in particular journalists. This interface provides information on why a specific topic is or may become a lead, assisting journalists in deciding where to focus their attention. We carry out an empirical evaluation of the performance of our tool.

Work partially supported by Villum Fonden, grants no. 29518 and 50079, and the Independent Research Fund Denmark, grant no. 0135-00219.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.mediacityodense.dk/en/.

  2. 2.

    Rules have to be stratified, i.e., they cannot have circular dependencies [4].

  3. 3.

    This rule captures the idea that if Peyton Manning and Tom Brady are both in the news, then it might be interesting to write an article about NFL Quarterbacks.

References

  1. Aiello, L.M., et al.: Sensing trending topics in Twitter. IEEE Trans. Multim. 15(6), 1268–1282 (2013)

    Article  Google Scholar 

  2. Chen, Y., Amiri, H., Li, Z., Chua, T.: Emerging topic detection for organizations from microblogs. In: Proceedings of SIGIR, pp. 43–52. ACM (2013)

    Google Scholar 

  3. Chomicki, J., Imielinski, T.: Temporal deductive databases and infinite objects. In: Proceedings of SIGMOD, pp. 61–73. ACM (1988)

    Google Scholar 

  4. Cruz-Filipe, L., Nunes, I., Gaspar, G.: Hypothetical answers to continuous queries over data streams. In: Proceedings of AAAI, pp. 2798–2805 (2020)

    Google Scholar 

  5. Das, A., Roy, M., Dutta, S., Ghosh, S., Das, A.K.: Predicting trends in the twitter social network: a machine learning approach. In: Panigrahi, B.K., Suganthan, P.N., Das, S. (eds.) SEMCCO 2014. LNCS, vol. 8947, pp. 570–581. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20294-5_49

    Chapter  Google Scholar 

  6. Diakopoulos, N., Dong, M., Bronner, L.: Generating location-based news leads for national politics reporting. In: Proceedings of Computational + Journalism Symposium (2020)

    Google Scholar 

  7. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Mazzara, M., Meyer, B. (eds.) Present and Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67425-4_12

    Chapter  Google Scholar 

  8. Giallorenzo, S., Montesi, F., Peressotti, M., Rademacher, F., Sachweh, S.: Jolie and LEMMA: model-driven engineering and programming languages meet on microservices. In: Damiani, F., Dardha, O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 276–284. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78142-2_17

    Chapter  Google Scholar 

  9. Guidi, C., Maschio, B.: A jolie based platform for speeding-up the digitalization of system integration processes. In: Proceedings of Microservices (2019)

    Google Scholar 

  10. Huang, Q., Liu, Z., Rosenberg, A.E., Gibbon, D.C., Shahraray, B.: Automated generation of news content hierarchy by integrating audio, video, and text information. In: Proceedings of ICASSP, pp. 3025–3028. IEEE Computer Society (1999)

    Google Scholar 

  11. Kowalski, R.A.: Predicate logic as programming language. In: Proceedings of IFIP, pp. 569–574. North-Holland (1974)

    Google Scholar 

  12. Leppänen, L., Munezero, M., Granroth-Wilding, M., Toivonen, H.: Data-driven news generation for automated journalism. In: Proceedings of INLG, pp. 188–197. Association for Computational Linguistics (2017)

    Google Scholar 

  13. Mathioudakis, M., Koudas, N.: TwitterMonitor: trend detection over the Twitter stream. In: Proceedings of SIGMOD, pp. 1155–1158. ACM (2010)

    Google Scholar 

  14. Montesi, F.: Process-aware web programming with jolie. Sci. Comput. Program. 130, 69–96 (2016)

    Article  Google Scholar 

  15. Montesi, F., Guidi, C., Zavattaro, G.: Service-oriented programming with Jolie. In: Bouguettaya, A., Sheng, Q., Daniel, F. (eds.) Web Services Foundations, pp. 81–107. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7518-7_4

    Chapter  Google Scholar 

  16. Montesi, F., Weber, J.: From the decorator pattern to circuit breakers in microservices. In: Proceedings of ACM SAC, pp. 1733–1735. ACM (2018)

    Google Scholar 

  17. Oh, C., et al.: Understanding user perception of automated news generation system. In: Proceedings of CHI, pp. 1–13. ACM (2020)

    Google Scholar 

  18. Pugachev, A., Voronov, A., Makarov, I.: Prediction of news popularity via keywords extraction and trends tracking. In: van der Aalst, W.M.P., et al. (eds.) AIST 2020. CCIS, vol. 1357, pp. 37–51. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71214-3_4

    Chapter  Google Scholar 

  19. Schwartz, R., Naaman, M., Teodoro, R.: Editorial algorithms: using social media to discover and report local news. In: Proceedings of ICWSM, pp. 407–415 (2015)

    Google Scholar 

  20. Zarrinkalam, F., Fani, H., Bagheri, E., Kahani, M.: Predicting users’ future interests on twitter. In: Jose, J.M., et al. (eds.) ECIR 2017. LNCS, vol. 10193, pp. 464–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56608-5_36

    Chapter  Google Scholar 

  21. Zimmermann, O., Stocker, M., Lübke, D., Zdun, U., Pautasso, C.: Patterns for API Design: Simplifying Integration with Loosely Coupled Message Exchanges. Addison-Wesley Signature Series (Vernon). Addison-Wesley Professional (2022)

    Google Scholar 

Download references

Acknowledgements

We thank Narongrit Unwerawattana for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Vistrup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cruz-Filipe, L., Kostopoulou, S., Montesi, F., Vistrup, J. (2023). \(\mu \)XL: Explainable Lead Generation with Microservices and Hypothetical Answers. In: Papadopoulos, G.A., Rademacher, F., Soldani, J. (eds) Service-Oriented and Cloud Computing. ESOCC 2023. Lecture Notes in Computer Science, vol 14183. Springer, Cham. https://doi.org/10.1007/978-3-031-46235-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46235-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46234-4

  • Online ISBN: 978-3-031-46235-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics