Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Series in Display Science and Technology ((SDST))

  • 284 Accesses

Abstract

To directly understand an unknown physical world, human visual sensing is a very important way. However, many physical scenes can not be directly sensed by the human visual system. A visual sensing system is an essential tool to link untouchable scenes and the human visual system. Here, visual sensing systems referring to devices and technologies can be used to capture, process, and interpret visible light signals of an unknown scene. Currently, the visual sensing system can be implemented through three different categories: traditional optical camera-based methods, ray-based light field methods, and wavefront-based light field methods. Among them, both the second and third methods can achieve realistic 3D imaging and reconstruction. In this chapter, we offer a comprehensive overview of the principles behind 3D imaging in visual sensing systems. We aim to provide a clear structure and thorough understanding of the various methods used for 3D imaging and reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferreira Santos, M. S., Jaramillo, E. A., Noell, A. C., et al. (2019). Capillary electrophoresis and contactless conductivity detection: A powerful tool for in situ analysis of samples from ocean worlds. Electrochemical Society Meeting Abstracts, 236, 2479–2479.

    Article  Google Scholar 

  2. Mahbub, U., Rahman, T., & Ahad, M. A. R. (2021). Contactless human monitoring: Challenges and future direction. In Contactless human activity analysis (pp. 335–364). Springer Nature Switzerland AG.

    Google Scholar 

  3. Arnall, T. (2006). A graphic language for touch-based interactions. Proceedings of mobile interaction with the real world MIRW.

    Google Scholar 

  4. Han, Y., Etigowni, S., Liu, H., et al. (2017). Watch me, but don't touch me! Contactless control flow monitoring via electromagnetic emanations (pp. 1095–1108). Proceedings of the 2017 ACM SIGSAC conference on computer and communications security.

    Google Scholar 

  5. Khuc, T., & Catbas, F. N. (2017). Completely contactless structural health monitoring of real-life structures using cameras and computer vision. Structural Control and Health Monitoring, 24, e1852.

    Article  Google Scholar 

  6. Yamamoto, A., van West, E., Watanabe, K., et al. (2005). Augmented dexterity in contactless object handling using a haptic interface. IEEE international conference mechatronics and automation, Vol. 1. pp. 309–314

    Google Scholar 

  7. Zhao, Y., Bennett, C. L., Benko, H., et al. (2018). Enabling people with visual impairments to navigate virtual reality with a haptic and auditory Cane simulation. Proceedings of the 2018 CHI conference on human factors in computing systems. pp. 1–14.

    Google Scholar 

  8. Manimuthu, A., Dharshini, V., Zografopoulos, I., et al. (2021). Contactless technologies for smart cities: Big Data, Iot, and cloud infrastructures. SN Computer Science, 2, 334.

    Article  Google Scholar 

  9. Jorquera-Chavez, M., Fuentes, S., Dunshea, F. R., et al. (2019). Computer vision and remote sensing to assess physiological responses of cattle to pre-slaughter stress, and its impact on beef quality: A review. Meat Science, 156, 11–22.

    Article  Google Scholar 

  10. Gordan, M., Ismail, Z., Ghaedi, K., et al. (2021). A brief overview and future perspective of unmanned aerial systems for in-service structural health monitoring. Engineering Advances, 1, 9–15.

    Article  Google Scholar 

  11. Parraga, C. A., Troscianko, T., & Tolhurst, D. J. (2000). The human visual system is optimised for processing the spatial information in natural visual images. Current Biology, 10, 35–38.

    Article  Google Scholar 

  12. Adini, Y., Sagi, D., & Tsodyks, M. (2002). Context-enabled learning in the human visual system. Nature, 415, 790–793.

    Article  ADS  Google Scholar 

  13. Davis, G., & Driver, J. (1994). Parallel detection of Kanizsa subjective figures in the human visual system. Nature, 371, 791–793.

    Article  ADS  Google Scholar 

  14. Isik, L., Meyers, E. M., Leibo, J. Z., et al. (2014). The dynamics of invariant object recognition in the human visual system. Journal of Neurophysiology, 111, 91–102.

    Article  Google Scholar 

  15. Panetta, K. A., Wharton, E. J., & Agaian, S. S. (2008). Human visual system-based image enhancement and logarithmic contrast measure. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 38, 174–188.

    Article  Google Scholar 

  16. Son, J.-Y., Lee, H., Lee, B.-R., et al. (2017). Holographic and light field displays: What are the differences? 2017 16th workshop on information optics (WIO). pp. 1–2.

    Google Scholar 

  17. Yamaguchi, M. (2016). Light-field and holographic three-dimensional displays. JOSA A, 33, 2348–2364.

    Article  ADS  Google Scholar 

  18. Son, J.-Y., Lee, H., Lee, B.-R., et al. (2017). Holographic and light-field imaging as future 3-D displays. Proceedings of the IEEE, 105, 789–804.

    Article  Google Scholar 

  19. McGlade, J., Wallace, L., Reinke, K., et al. (2022). The potential of low-cost 3D imaging technologies for forestry applications: Setting a research agenda for low-cost remote sensing inventory tasks. Forests, 13, 204.

    Article  Google Scholar 

  20. Mikita, T., Balková, M., Bajer, A., et al. (2020). Comparison of different remote sensing methods for 3d modeling of small rock outcrops. Sensors, 20, 1663.

    Article  ADS  Google Scholar 

  21. Tondewad, M. P. S., & Dale, M. M. P. (2020). Remote sensing image registration methodology: Review and discussion. Procedia Computer Science, 171, 2390–2399.

    Article  Google Scholar 

  22. Żakowicz, W. (2001). Light rays and imaging in wave optics. Physical Review E, 64, 066610.

    Article  ADS  Google Scholar 

  23. Park, J. H., Hong, K., & Lee, B. (2009). Recent progress in three-dimensional information processing based on integral imaging. Applied Optics, 48, H77–H94.

    Article  ADS  Google Scholar 

  24. Xu, L., Xiao, W., Zhang, L., et al. (2020). Observation of light rays on absolute geodesic lenses. Optics Express, 28, 20215–20224.

    Article  ADS  Google Scholar 

  25. Gabor, D. (1972). Holography, 1948–1971. Science, 177, 299–313.

    Article  ADS  Google Scholar 

  26. Arkani-Hamed, N., Porrati, M., & Randall, L. (2001). Holography and phenomenology. Journal of High Energy Physics, 2001, 017.

    Article  ADS  MathSciNet  Google Scholar 

  27. Kreis, T. M., Adams, M., & Jüptner, W. P. (1997). Methods of digital holography: A comparison. Optical Inspection and Micromeasurements II, 3098, 224–233.

    Article  ADS  Google Scholar 

  28. Xu, X., Pan, Y., Lwin, P. P. M. Y., et al. (2011). 3D holographic display and its data transmission requirement. 2011 international conference on information photonics and optical communications. pp. 1–4.

    Book  Google Scholar 

  29. Yaraş, F., Kang, H., & Onural, L. (2010). State of the art in holographic displays: A survey. Journal of Display Technology, 6, 443–454.

    Article  ADS  Google Scholar 

  30. Yu, H., Lee, K., Park, J., et al. (2017). Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nature Photonics, 11, 186–192.

    Article  ADS  Google Scholar 

  31. Park, J., Lee, K., & Park, Y. (2019). Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon Sieve. Nature Communications, 10, 1304.

    Article  ADS  Google Scholar 

  32. Lucente, M. (1997). Interactive three-dimensional holographic displays: Seeing the future in depth. ACM Siggraph Comput Graph, 31, 63–67.

    Article  Google Scholar 

  33. Xu, X., Liang, X., Pan, Y., et al. (2013). Development of full-color full-parallax digital 3D holographic display system and its prospects. Practical Holography XXVII: Materials and Applications, 8644, 44–53.

    Google Scholar 

  34. Kozacki, T., Finke, G., Garbat, P., et al. (2012). Wide angle holographic display system with spatiotemporal multiplexing. Optics Express, 20, 27473–27481.

    Article  ADS  Google Scholar 

  35. Zhang, H., Tan, Q., & Jin, G. (2012). Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination. Optical Engineering, 51, 075801–075801.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J. et al. (2023). Introduction. In: Cameras and Display Systems Towards Photorealistic 3D Holography. Series in Display Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-45844-6_1

Download citation

Publish with us

Policies and ethics