Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards a Certified Proof Checker for Deep Neural Network Verification

  • Conference paper
  • First Online:
Logic-Based Program Synthesis and Transformation (LOPSTR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14330))

Abstract

Recent developments in deep neural networks (DNNs) have led to their adoption in safety-critical systems, which in turn has heightened the need for guaranteeing their safety. These safety properties of DNNs can be proven using tools developed by the verification community. However, these tools are themselves prone to implementation bugs and numerical stability problems, which make their reliability questionable. To overcome this, some verifiers produce proofs of their results which can be checked by a trusted checker. In this work, we present a novel implementation of a proof checker for DNN verification. It improves on existing implementations by offering numerical stability and greater verifiability. To achieve this, we leverage two key capabilities of Imandra, an industrial theorem prover: its support for exact real arithmetic and its formal verification infrastructure. So far, we have implemented a proof checker in Imandra, specified its correctness properties and started to verify the checker’s compliance with them. Our ongoing work focuses on completing the formal verification of the checker and further optimising its performance.

R. Desmartin and O. Isac—Both authors contributed equally.

R. Desmartin—Funded by Imandra Inc.

E. Komendantskaya—Funded by EPSRC grant AISEC (EP/T026952/1) and NCSC grant “Neural Network Verification: in search of the missing spec.”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Coq Proof Assistant (1984). https://coq.inria.fr

  2. Bak, S.: Nnenum: verification of ReLU neural networks with optimized abstraction refinement. In: Proceedings of 13th International Symposium NASA Formal Methods (NFM), pp. 19–36 (2021)

    Google Scholar 

  3. Barrett, C., Katz, G., Guidotti, D., Pulina, L., Narodytska, N., Tacchella, A.: The Verification of Neural Networks Library (VNN-LIB) (2019). https://www.vnnlib.org/

  4. Barrett, C., de Moura, L., Fontaine, P.: Proofs in satisfiability modulo theories. In: All About Proofs, Proofs for All, vol. 55, no. 1, pp. 23–44 (2015)

    Google Scholar 

  5. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.: Measuring neural net robustness with constraints. In: Proceedings of 30th Conference on Neural Information Processing Systems (NeurIPS) (2016)

    Google Scholar 

  6. Bray, T.: The JavaScript Object Notation (JSON) Data Interchange Format (2014). https://www.rfc-editor.org/info/rfc7159

  7. Breitner, J., et al.: Ready, set, verify! applying Hs-to-Coq to real-world Haskell code. J. Funct. Program. 31, e5 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brix, C., Müller, M.N., Bak, S., Johnson, T.T., Liu, C.: First Three Years of the International Verification of Neural Networks Competition (VNN-COMP). Technical report (2023). http://arxiv.org/abs/2301.05815

  9. Brix, C., Noll, T.: Debona: Decoupled Boundary Network Analysis for Tighter Bounds and Faster Adversarial Robustness Proofs. Technical report (2020). http://arxiv.org/abs/2006.09040

  10. Daggitt, M.L., Kokke, W., Atkey, R., Arnaboldi, L., Komendantskaya, E.: Vehicle: Interfacing Neural Network Verifiers with Interactive Theorem Provers. Technical report (2022). http://arxiv.org/abs/2202.05207

  11. Dantzig, G.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)

    Google Scholar 

  12. Desmartin, R., Isac, O., Passmore, G., Stark, K., Katz, G., Komendantskaya, E.: Towards a Certified Proof Checker for Deep Neural Network Verification. Technical report (2023). http://arxiv.org/abs/2307.06299

  13. Desmartin, R., Passmore, G.O., Komendantskaya, E.: Neural networks in imandra: matrix representation as a verification choice. In: Proceedings of 5th International Workshop of Software Verification and Formal Methods for ML-Enabled Autonomous Systems (FoMLAS) and 15th International Workshop on Numerical Software Verification (NSV), pp. 78–95 (2022)

    Google Scholar 

  14. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963_11

    Chapter  Google Scholar 

  15. Ferrari, C., Mueller, M.N., Jovanović, N., Vechev, M.: Complete verification via multi-neuron relaxation guided branch-and-bound. In: Proceedings of 10th International Conference on Learning Representations (ICLR) (2022)

    Google Scholar 

  16. Henriksen, P., Lomuscio, A.: DEEPSPLIT: an efficient splitting method for neural network verification via indirect effect analysis. In: Proceedings of 30th International Joint Conference on Artificial Intelligence (IJCAI), pp. 2549–2555 (2021)

    Google Scholar 

  17. Isac, O., Barrett, C., Zhang, M., Katz, G.: Neural network verification with proof production. In: Proceedings 22nd International Conference on Formal Methods in Computer-Aided Design (FMCAD), pp. 38–48 (2022)

    Google Scholar 

  18. Jia, K., Rinard, M.: Exploiting verified neural networks via floating point numerical error. In: Drăgoi, C., Mukherjee, S., Namjoshi, K. (eds.) SAS 2021. LNCS, vol. 12913, pp. 191–205. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88806-0_9

    Chapter  Google Scholar 

  19. Julian, K., Kochenderfer, M., Owen, M.: Deep neural network compression for aircraft collision avoidance systems. J. Guid. Control. Dyn. 42(3), 598–608 (2019)

    Article  Google Scholar 

  20. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: a calculus for reasoning about deep neural networks. Form. Methods Syst. Des. (FMSD) 60(1), 87–116 (2021)

    Article  MATH  Google Scholar 

  21. Katz, G., et al.: The marabou framework for verification and analysis of deep neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26

    Chapter  Google Scholar 

  22. Kaufmann, M., Moore, J.S.: ACL2: an industrial strength version of Nqthm. In: Proceedings of 11th Conference on Computer Assurance (COMPASS), pp. 23–34 (1996)

    Google Scholar 

  23. Khedr, H., Ferlez, J., Shoukry, Y.: PEREGRiNN: penalized-relaxation greedy neural network verifier. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 287–300. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_13

    Chapter  Google Scholar 

  24. Miné, A., Leroy, X., Cuoq, P., Troestler, C.: The Zarith Library (2023). https://github.com/ocaml/Zarith

  25. de Moura, L., Passmore, G.O.: Computation in real closed infinitesimal and transcendental extensions of the rationals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 178–192. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_12

    Chapter  Google Scholar 

  26. Necula, G.: Compiling with Proofs. Carnegie Mellon University (1998)

    Google Scholar 

  27. Norell, U.: Dependently typed programming in Agda. In: Proceedings of 4th International Workshop on Types in Language Design and Implementation (TLDI), pp. 1–2 (2009)

    Google Scholar 

  28. Passmore, G., et al.: The imandra automated reasoning system (system description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp. 464–471. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1_30

    Chapter  MATH  Google Scholar 

  29. Passmore, G.O.: Some lessons learned in the industrialization of formal methods for financial algorithms. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 717–721. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90870-6_39

    Chapter  Google Scholar 

  30. Paulson, L.C.: Isabelle: A Generic Theorem Prover. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0030541

    Book  MATH  Google Scholar 

  31. Prabhakar, P., Afzal, Z.R.: Abstraction based output range analysis for neural networks. In: Proceedings of 32nd International Conference on Neural Information Processing Systems (NeurIPS), pp. 15762–15772 (2019)

    Google Scholar 

  32. Smith, J., Allen, J., Swaminathan, V., Zhang, Z.: Refutation-Based Adversarial Robustness Verification of Deep Neural Networks (2021)

    Google Scholar 

  33. Suzuki, K.: Overview of deep learning in medical imaging. Radiol. Phys. Technol. 10(3), 257–273 (2017)

    Article  Google Scholar 

  34. Szegedy, C., et al.: Intriguing Properties of Neural Networks. Technical report (2013). http://arxiv.org/abs/1312.6199

  35. Vanderbei, R.: Linear programming: foundations and extensions. J. Oper. Res. Soc. (1996)

    Google Scholar 

  36. Wang, S., et al.: Beta-CROWN: efficient bound propagation with per-neuron split constraints for neural network robustness verification. Adv. Neural. Inf. Process. Syst. 34, 29909–29921 (2021)

    Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their valuable comments and suggestions, which greatly helped us to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omri Isac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Desmartin, R., Isac, O., Passmore, G., Stark, K., Komendantskaya, E., Katz, G. (2023). Towards a Certified Proof Checker for Deep Neural Network Verification. In: Glück, R., Kafle, B. (eds) Logic-Based Program Synthesis and Transformation. LOPSTR 2023. Lecture Notes in Computer Science, vol 14330. Springer, Cham. https://doi.org/10.1007/978-3-031-45784-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45784-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45783-8

  • Online ISBN: 978-3-031-45784-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics