Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Classification of Tweets Identifying Mental Health Conditions in Central American Population in a Pandemic

  • Conference paper
  • First Online:
Technologies and Innovation (CITI 2023)

Abstract

The Covid-19 pandemic has had a negative impact on the physical health of the Central American population. Fear, anxiety and stress were normal reactions in quarantine, due to the uncertainty of the unknown, which makes it understandable that the population experienced feelings or psychological affections. Social networks were the means of communication for thousands of people in quarantine. The increased use of social networks to share comments, content and opinions makes it possible to have a large amount of information. Twitter has been one of the most widely used social networks due to its ease of access and use. The analysis of tweets requires a systematic process for their collection, transformation and classification, integrating different artificial intelligence tools such as natural language processing, automatic learning or deep learning. Automatic text classification aims at finding an adequate way to categorize the documents according to the attributes made up of words that describe each specific category. For this reason, our study has been carried out with a corpus in Spanish extracted from Twitter for the automatic classification of texts, from which we have categorized, through the automatic learning approach, the tweets about Covid-19 in the Central American region, in order to know if the population has suffered any psychological effects. Based on the results, we can say that the automatic learning models provide competitive results in terms of automatic identification of texts with an accuracy of 89%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Velavan, T., Meyer, C.S.: The COVID-19 epidemic. Tropical Med. Int. Health 25, 278–280 (2020)

    Article  Google Scholar 

  2. SreeJagadeesh, M., Alphonse, P.J.: COVID-19 outbreak: an ensemble pre-trained deep learning model for detecting informative tweets. Appl. Soft Comput. J. 107, 1–7 (2021)

    Google Scholar 

  3. Cedeno-Moreno, D., Vargas-Lombardo, M., Navarro, N.: Recommendation system for emotional self-control of older adults post-COVID-19 in Panama. Revista Iberica de Sistemas e Tecnologias de Informacaon 54, 203–217 (2022)

    Google Scholar 

  4. Heitzman, J.: Impact of COVID-19 pandemic on mental health. Psychiatr. Pol. 54, 187–198 (2020)

    Article  Google Scholar 

  5. Dang, C.N., Moreno-García, M., De la Prieta, F.: Hybrid deep learning models for sentiment analysis. Hindawi 2021, 1–16 (2021)

    Google Scholar 

  6. Habimana, O., Li, Y., Li, R., Gu, X.: Hybrid deep learning models for sentiment analysis. Sci. China Inf. 63, 1–36 (2020)

    Google Scholar 

  7. Nemes, L., Kiss, A.: Social media sentiment analysis based on COVID-19. J. Inf. Telecommun. 5, 1–15 (2021)

    Google Scholar 

  8. Madsen, A., Reddy, S., Chandar, S.: Post-hoc interpretability for neural NLP: a survey. ACM Comput. Surv. 55, 1–42 (2023)

    Article  Google Scholar 

  9. Chen, J., Tam, D., Raffel, C., Bansal, M., Yang, D.: An empirical survey of data augmentation for limited data learning in NLP. Trans. Assoc. Comput. Linguist. 11, 191–211 (2023)

    Article  Google Scholar 

  10. Prakash, I., Kumar, A., Sethi, T.: Learning the mental health impact of COVID-19 in the united states with explainable artificial intelligence. JMIR Mental Health 8, 1517–1537 (2021)

    Google Scholar 

  11. VMaoTao, L.: Smart financial management system based on data ming and man-machine management. Hindawi Wirel. Commun. Mob. Comput. 2022, 30–40 (2022)

    Google Scholar 

  12. Nahar, N., Hossain, M.S., Andersson, K.: A machine learning based fall detection for elderly people with neurodegenerative disorders. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 194–203. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_18

    Chapter  Google Scholar 

  13. Umer, M., Imtiaz, Z., Ahmad, M.: Impact of convolutional neural network and FastText embedding on text classification. Multimed. Tools Appl. Health 82, 5569–5585 (2022)

    Article  Google Scholar 

  14. Al-Garadi, M., Kim, S., Guo, Y., Warren, E.: Natural language model for automatic identification of intimate partner violence reports from Twitter. J. Array 15, 3–21 (2022)

    Google Scholar 

  15. Edwards, T., Jones, C.B., Corcoran, P.: Identifying wildlife observations on twitter. Eco. Inform. 67, 296–311 (2022)

    Google Scholar 

  16. Yang, Y., Xie, A., Kim, S., Hair, J., Al-Garadi, M., Sarker, A.: Automatic detection of twitter users who express chronic stress experiences via supervised machine learning and natural language processing. Comput. Inform. Nurs. 41, 1–8 (2022)

    Google Scholar 

  17. Jasti, V., Kumar, G., Kumar, M., Maheshwari, V., Jayagopal, P.: Relevant-based feature ranking (RBFR) method for text classification based on machine learning algorithm. J. Nanomater. 1–12 (2022)

    Google Scholar 

  18. Wadud, A., Kabir, M., Mridha, M.F., Ali, M.: How can we manage offensive text in social media - a text classification approach using LSTM-BOOST. Int. J. Inf. Manag. Data Insights 2, 151–159 (2022)

    Google Scholar 

  19. Benítez-Andrades, J.A., González-Jiménez, Á., López-Brea, Á., Aveleira-Mata, J.: Detecting racism and xenophobia using deep learning models on Twitter data: CNN, LSTM and BERT. PeerJ Comput. Sci. 8, 1–24 (2022)

    Article  Google Scholar 

  20. Ghosh, S., Maji, S., Desarkar, M.: GNoM: graph neural network enhanced language models for disaster related multilingual text classification. In: ACM International Conference, vol. 1, pp. 55–65 (2022)

    Google Scholar 

  21. Haynes, C., et al.: Automatic classification of national health service feedback. Mathematics 10, 983 (2022)

    Article  Google Scholar 

  22. Hassan, S., Ahamed, J., Ahmad, K.: Analytics of machine learning-based algorithms for text classification. Sustain. Oper. Comput. 3, 238–248 (2022)

    Article  Google Scholar 

  23. Qasim, R., Bangyal, W., Alqarni, M., Ali Almazroi, A.: A fine-tuned BERT-based transfer learning approach for text classification. J. Healthc. Eng. 2022, 297–302 (2022)

    Article  Google Scholar 

  24. Shorten, C., Khoshgoftaar, T.M., Furht, B.: Deep learning applications for COVID-19. J. Big Data 8, 816–831 (2021)

    Article  Google Scholar 

  25. Ramírez-Tinoco, F., Alor-Hernández, G., Sánchez-Cervantes, J., Salas-Zárate, M.P., Valencia-García, R.: Use of sentiment analysis techniques in healthcare domain. Stud. Comput. Intell. 815, 189–212 (2019)

    Article  Google Scholar 

  26. Al-Shaher, M.A.: A hybrid deep learning and NLP based system to predict the spread of Covid-19 and unexpected side effects on people. Period. Eng. Nat. Sci. 8, 2232–2241 (2020)

    Google Scholar 

  27. Usher, K., Durkin, J., Bhullar, N.: The COVID-19 pandemic and mental health impacts. Int. J. Ment. Health Nurs. 29, 315–318 (2020)

    Article  Google Scholar 

  28. Islam, M.R., Nahiduzzaman, M.: Complex features extraction with deep learning model for the detection of COVID19 from CT scan images using ensemble based machine learning approach. Expert Syst. Appl. 195, 164–172 (2022)

    Article  Google Scholar 

  29. Altınel, B., Ganiz, M.: Semantic text classification: a survey of past and recent advances. Inf. Process. Manag. 54, 1129–1153 (2018)

    Article  Google Scholar 

  30. Behl, S., Rao, A., Aggarwal, S., Chadha, S., Pannu, H.S.: Twitter for disaster relief through sentiment analysis for COVID-19 and natural hazard crises. Int. J. Disaster Risk Reduct. 55, 1–178 (2021)

    Article  Google Scholar 

  31. Palimkar, P., Shaw, R.N., Ghosh, A.: Machine learning technique to prognosis diabetes disease: random forest classifier approach. Adv. Comput. Intell. Technol. 218, 125–133 (2022)

    Google Scholar 

  32. Bansal, M., Goyal, A., Choudhary, A.: A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning. Decis. Anal. J. 3, 43–50 (2022)

    Google Scholar 

  33. Duy-Hien, V., Trong-Sinh, V., The-Dung, L.: An efficient and practical approach for privacy-preserving Naive Bayes classification. J. Inf. Secur. Appl. 68, 43–50 (2022)

    Google Scholar 

  34. Dumitrescu, E., Hué, S., Hurlin, C., Tokpavi, S.: Machine learning for credit scoring: improving logistic regression with non-linear decision-tree effects. Eur. J. Oper. Res. 297, 263–267 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. García-Díaz, J.A., Jiménez-Zafra, S.M., García-Cumbreras, M.A., Valencia-García, R.: Evaluating feature combination strategies for hate-speech detection in Spanish using linguistic features and transformers. Complex Intell. Syst. 9, 2893–2914 (2023)

    Article  Google Scholar 

  36. Krallinger, M., et al.: Evaluation of text-mining systems for biology: overview of the second BioCreative community challenge. Genome Biol. 9, 1715–1719 (2008)

    Article  Google Scholar 

  37. Min, H.J., Park, J.C.: Identifying helpful reviews based on customer’s mentions about experiences. Expert Syst. Appl. 39, 11830–11838 (2012)

    Article  Google Scholar 

  38. Othman, M., Hassan, H., Moawad, R., Idrees, A.M.: Using NLP approach for opinion types classifier. J. Comput. 9, 400–410 (2018)

    Google Scholar 

  39. Laila, U., Mahboob, K., Khan, A.W., Khan, F., Taekeun, W.: An ensemble approach to predict early-stage diabetes risk using machine learning: an empirical study. Sensors 22, 1–15 (2022)

    Article  Google Scholar 

  40. Muller, A.E., Patricia Sofia Jacobsen, P., Rose, C.: Machine learning in systematic reviews: comparing automated text clustering with Lingo3G and human researcher categorization in a rapid review. Res. Synth. Methods 13, 229–241 (2022)

    Google Scholar 

  41. Cedeno-Moreno, D., Vargas-Lombardo, M., Navarro, N.: Deep learning and machine learning approach applied to the automatic classification of opinions on Twitter in the Covid-19 pandemic in Panama. Revista Iberica de Sistemas e Tecnologias de Informacaon 45, 200–211 (2021)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Secretariat of Science, Technology and Innovation of Panama (SENACYT, SNI) for the support given in the development of this research. Also, Panama of the Technological University of Panama (FISC-UTP).

Authors Contribution. Conceptualization DCM; methodology DCM; formal analysis DCM, NN; research DCM; original-writing CM, MVL, NN; writing-review and edition DCM, MVL; Corresponding author DCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Cedeno-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cedeno-Moreno, D., Vargas-Lombardo, M., Navarro, N. (2023). Automatic Classification of Tweets Identifying Mental Health Conditions in Central American Population in a Pandemic. In: Valencia-García, R., Bucaram-Leverone, M., Del Cioppo-Morstadt, J., Vera-Lucio, N., Centanaro-Quiroz, P.H. (eds) Technologies and Innovation. CITI 2023. Communications in Computer and Information Science, vol 1873. Springer, Cham. https://doi.org/10.1007/978-3-031-45682-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45682-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45681-7

  • Online ISBN: 978-3-031-45682-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics