Abstract
Magnetic Resonance Imaging (MRI) and positron emission tomography (PET) are the most used imaging modalities for Alzheimer’s disease (AD) diagnosis in clinics. Although PET can better capture AD-specific pathologies than MRI, it is less used compared with MRI due to high cost and radiation exposure. Imputing PET images from MRI is one way to bypass the issue of unavailable PET, but is challenging due to severe ill-posedness. Instead, we propose to directly impute classification-oriented PET features and combine them with real MRI to improve the overall performance of AD diagnosis. In order to more effectively impute PET features, we discretize the feature space by vector quantization and employ transformer to perform feature transition between MRI and PET. Our model is composed of three stages including codebook generation, mapping construction, and classifier enhancement based on combined features. We employ paired MRI-PET data during training to enhance the performance of MRI data during inference. Experimental results on ADNI dataset including 1346 subjects show a boost in classification performance of MRI without requiring PET. Our proposed method also outperforms other state-of-the-art data imputation methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Association, A.: 2019 Alzheimer’s disease facts and figures. Alzheimer’s Dementia 15(3), 321–387 (2019)
Aisen, P.S., et al.: On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimer’s Res. Therapy 9, 1–10 (2017)
Marcus, C., Mena, E., Subramaniam, R.M.: Brain PET in the diagnosis of Alzheimer’s disease. Clin. Nucl. Med. 39(10), e413 (2014)
Bloudek, L.M., Spackman, D.E., Blankenburg, M., Sullivan, S.D.: Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J. Alzheimers Dis. 26(4), 627–645 (2011)
Frisoni, G.B., et al.: Imaging markers for Alzheimer disease: which vs how. Neurology 81(5), 487–500 (2013)
Narazani, M., Sarasua, I., Pölsterl, S., Lizarraga, A., Yakushev, I., Wachinger, C.: Is a PET all you need? a multi-modal study for Alzheimer’s disease using 3D CNNs. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, pp. 66–76. Springer (2022). https://doi.org/10.1007/978-3-031-16431-6_7
Pan, X., et al.: Multi-view separable pyramid network for AD prediction at MCI stage by 18 F-FDG brain PET imaging. IEEE Trans. Med. Imaging 40(1), 81–92 (2020)
Thung, K.H., Wee, C.Y., Yap, P.T., Shen, D., Initiative, A.D.N., et al.: Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion. Neuroimage 91, 386–400 (2014)
Ning, Z., Xiao, Q., Feng, Q., Chen, W., Zhang, Y.: Relation-induced multi-modal shared representation learning for Alzheimer’s disease diagnosis. IEEE Trans. Med. Imaging 40(6), 1632–1645 (2021)
Kazeminia, S., et al.: GANs for medical image analysis. Artif. Intell. Med. 109, 101938 (2020)
Lin, W., et al.: Bidirectional mapping of brain MRI and PET with 3D reversible GAN for the diagnosis of Alzheimer’s disease. Front. Neurosci. 15, 646013 (2021)
Pan, Y., Liu, M., Lian, C., Zhou, T., Xia, Y., Shen, D.: Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer’s Disease diagnosis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 455–463. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_52
Pan, Y., Liu, M., Lian, C., Xia, Y., Shen, D.: Disease-image specific generative adversarial network for brain disease diagnosis with incomplete multi-modal neuroimages. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 137–145. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_16
Pan, Y., Liu, M., Xia, Y., Shen, D.: Disease-image-specific learning for diagnosis-oriented neuroimage synthesis with incomplete multi-modality data. IEEE TPAMI 44(10), 6839–6853 (2021)
Mallya, M., Hamarneh, G.: Deep multimodal guidance for medical image classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, pp. 298–308. Springer (2022). https://doi.org/10.1007/978-3-031-16449-1_29
Shen, Z., et al.: Collaborative quantization embeddings for intra-subject prostate mr image registration. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, pp. 237–247. Springer (2022). https://doi.org/10.1007/978-3-031-16446-0_23
Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems 30 (2017)
Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. In: Advances in Neural Information Processing Systems 32 (2019)
Santhirasekaram, A., Kori, A., Winkler, M., Rockall, A., Glocker, B.: Vector quantisation for robust segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, pp. 663–672. Springer (2022). https://doi.org/10.1007/978-3-031-16440-8_63
Jack, C.R., Jr., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)
Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)
Kurth, F., Gaser, C., Luders, E.: A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM). Nat. Protoc. 10(2), 293–304 (2015)
He, S., Feng, Y., Grant, P.E., Ou, Y.: Deep relation learning for regression and its application to brain age estimation. IEEE Trans. Med. Imaging 41(9), 2304–2317 (2022)
Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)
Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12873–12883 (2021)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1125–1134 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y., Sun, K., Liu, Y., Ou, Z., Shen, D. (2024). Vector Quantized Multi-modal Guidance for Alzheimer’s Disease Diagnosis Based on Feature Imputation. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-45673-2_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45672-5
Online ISBN: 978-3-031-45673-2
eBook Packages: Computer ScienceComputer Science (R0)