Nothing Special   »   [go: up one dir, main page]

Skip to main content

Triplet Learning for Chest X-Ray Image Search in Automated COVID-19 Analysis

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14349))

Included in the following conference series:

Abstract

Chest radiology images such as CT scans and X-ray images have been extensively employed in computer-assisted analysis of COVID-19, utilizing various learning-based techniques. As a trending topic, image retrieval is a practical solution by providing users with a selection of remarkably similar images from a retrospective database, thereby assisting in timely diagnosis and intervention. Many existing studies utilize deep learning algorithms for chest radiology image retrieval by extracting features from images and searching the most similar images based on the extracted features. However, these methods seldom consider the complex relationship among images (e.g., images belonging to the same category tend to share similar representations, and vice versa), which may result in sub-optimal retrieval accuracy. In this paper, we develop a triplet-constrained image retrieval (TIR) framework for chest radiology image search to aid in COVID-19 diagnosis. The TIR contains two components: (a) feature extraction and (b) image retrieval, where a triplet constraint and an image reconstruction constraint are embedded to enhance the discriminative ability of learned features. In particular, the triplet constraint is designed to minimize the distances between images belonging to the same category and maximize the distances between images from different categories. Based on the extracted features, we further perform chest X-ray (CXR) image search. Experimental results on a total of 29, 986 CXR images from a public COVIDx dataset with 16, 648 subjects demonstrate the effectiveness of the proposed method compared with several state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apostolopoulos, I.D., Mpesiana, T.A.: Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med. 43, 635–640 (2020)

    Article  Google Scholar 

  2. Wang, L., Lin, Z.Q., Wong, A.: Covid-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 10(1), 1–12 (2020)

    Google Scholar 

  3. Hu, B., Vasu, B., Hoogs, A.: X-MRI: explainable medical image retrieval. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 440–450 (2022)

    Google Scholar 

  4. Qi, A., et al.: Directional mutation and crossover boosted ant colony optimization with application to covid-19 x-ray image segmentation. Comput. Biol. Med. 148, 105810 (2022)

    Google Scholar 

  5. Covid, C., et al.: Severe outcomes among patients with coronavirus disease 2019 (COVID-19)-United States, February 12–March 16 2020. Morb. Mortal. Wkly Rep. 69(12), 343 (2020)

    Google Scholar 

  6. Akgül, C.B., Rubin, D.L., Napel, S., Beaulieu, C.F., Greenspan, H., Acar, B.: Content-based image retrieval in radiology: current status and future directions. J. Digit. Imaging 24, 208–222 (2011)

    Article  Google Scholar 

  7. Das, P., Neelima, A.: An overview of approaches for content-based medical image retrieval. Int. J. Multimedia Inf. Retrieval 6(4), 271–280 (2017). https://doi.org/10.1007/s13735-017-0135-x

    Article  Google Scholar 

  8. Jain, R., Gupta, M., Taneja, S., Hemanth, D.J.: Deep learning based detection and analysis of COVID-19 on chest X-ray images. Appl. Intell. 51, 1690–1700 (2021)

    Article  Google Scholar 

  9. Minaee, S., Kafieh, R., Sonka, M., Yazdani, S., Soufi, G.J.: Deep-COVID: predicting COVID-19 from chest X-ray images using deep transfer learning. Med. Image Anal. 65, 101794 (2020)

    Article  Google Scholar 

  10. Zhong, A., et al.: Deep metric learning-based image retrieval system for chest radiograph and its clinical applications in COVID-19. Med. Image Anal. 70, 101993 (2021)

    Article  Google Scholar 

  11. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  12. Jégou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comput. Vision 87, 316–336 (2010)

    Article  Google Scholar 

  13. Yao, D., et al.: A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity. IEEE Trans. Med. Imaging 40(4), 1279–1289 (2021)

    Article  MathSciNet  Google Scholar 

  14. Liu, M., Zhang, D., Shen, D.: Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment. IEEE Trans. Med. Imaging 35(6), 1463–1474 (2016)

    Article  Google Scholar 

  15. Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Rundo, L., et al.: USE-Net: incorporating squeeze-and-excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets. Neurocomputing 365, 31–43 (2019)

    Article  Google Scholar 

  18. Kaiming, H., Shaoqing, R., Jian, S.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  19. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  20. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  21. Zhu, H., Long, M., Wang, J., Cao, Y.: Deep hashing network for efficient similarity retrieval. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  22. Liu, H., Wang, R., Shan, S., Chen, X.: Deep supervised hashing for fast image retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2064–2072 (2016)

    Google Scholar 

  23. Cao, Y., Long, M., Liu, B., Wang, J.: Deep cauchy hashing for hamming space retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1229–1237 (2018)

    Google Scholar 

  24. Mohite, N.B., Gonde, A.B.: Deep features based medical image retrieval. Multimedia Tools Appl. 81(8), 11379–11392 (2022). https://doi.org/10.1007/s11042-022-12085-x

    Article  Google Scholar 

  25. Shen, Y., Li, H., Yi, S., Chen, D., Wang, X.: Person re-identification with deep similarity-guided graph neural network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 508–526. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_30

    Chapter  Google Scholar 

  26. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  27. Liu, Y., Yue, L., Xiao, S., Yang, W., Shen, D., Liu, M.: Assessing clinical progression from subjective cognitive decline to mild cognitive impairment with incomplete multi-modal neuroimages. Med. Image Anal. 75, 102266 (2022)

    Article  Google Scholar 

  28. Liu, M., Gao, Y., Yap, P.T., Shen, D.: Multi-hypergraph learning for incomplete multimodality data. IEEE J. Biomed. Health Inf. 22(4), 1197–1208 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

L. Qiao was supported in part by National Natural Science Foundation of China (Nos. 61976110, 62176112, 11931008) and Natural Science Foundation of Shandong Province (No. ZR202102270451).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lishan Qiao or Mingxia Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Wang, Q., Wang, X., Ma, Y., Qiao, L., Liu, M. (2024). Triplet Learning for Chest X-Ray Image Search in Automated COVID-19 Analysis. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics