Nothing Special   »   [go: up one dir, main page]

Skip to main content

GEMTrans: A General, Echocardiography-Based, Multi-level Transformer Framework for Cardiovascular Diagnosis

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14349))

Included in the following conference series:

Abstract

Echocardiography (echo) is an ultrasound imaging modality that is widely used for various cardiovascular diagnosis tasks. Due to inter-observer variability in echo-based diagnosis, which arises from the variability in echo image acquisition and the interpretation of echo images based on clinical experience, vision-based machine learning (ML) methods have gained popularity to act as secondary layers of verification. For such safety-critical applications, it is essential for any proposed ML method to present a level of explainability along with good accuracy. In addition, such methods must be able to process several echo videos obtained from various heart views and the interactions among them to properly produce predictions for a variety of cardiovascular measurements or interpretation tasks. Prior work lacks explainability or is limited in scope by focusing on a single cardiovascular task. To remedy this, we propose a General, Echo-based, Multi-Level Transformer (GEMTrans) framework that provides explainability, while simultaneously enabling multi-video training where the inter-play among echo image patches in the same frame, all frames in the same video, and inter-video relationships are captured based on a downstream task. We show the flexibility of our framework by considering two critical tasks including ejection fraction (EF) and aortic stenosis (AS) severity detection. Our model achieves mean absolute errors of 4.15 and 4.84 for single and dual-video EF estimation and an accuracy of 96.5% for AS detection, while providing informative task-specific attention maps and prototypical explainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 139, pp. 813–824. PMLR (2021)

    Google Scholar 

  2. Biewald, L.: Experiment tracking with weights and biases (2020)

    Google Scholar 

  3. Cheng, L.H., Sun, X., van der Geest, R.J.: Contrastive learning for echocardiographic view integration. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 340–349. Springer, Cham (2022)

    Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding (2019)

    Google Scholar 

  5. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  6. Duffy, G., et al.: High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning. JAMA Cardiol. 7(4), 386–395 (2022)

    Article  Google Scholar 

  7. Fiorito, A.M., Østvik, A., Smistad, E., Leclerc, S., Bernard, O., Lovstakken, L.: Detection of cardiac events in echocardiography using 3D convolutional recurrent neural networks. In: IEEE International Ultrasonics Symposium, pp. 1–4 (2018)

    Google Scholar 

  8. Gao, X., Li, W., Loomes, M., Wang, L.: A fused deep learning architecture for viewpoint classification of echocardiography. Inf. Fusion 36, 103–113 (2017)

    Article  Google Scholar 

  9. Ginsberg, T., et al.: Deep video networks for automatic assessment of aortic stenosis in echocardiography. In: Noble, J.A., Aylward, S., Grimwood, A., Min, Z., Lee, S.-L., Hu, Y. (eds.) ASMUS 2021. LNCS, vol. 12967, pp. 202–210. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87583-1_20

    Chapter  Google Scholar 

  10. Gu, A.N., et al.: Efficient echocardiogram view classification with sampling-free uncertainty estimation. In: Noble, J.A., et al. (eds.) ASMUS 2021. LNCS, vol. 12967, pp. 139–148. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87583-1_14

    Chapter  Google Scholar 

  11. Huang, Z., Long, G., Wessler, B., Hughes, M.C.: A new semi-supervised learning benchmark for classifying view and diagnosing aortic stenosis from echocardiograms. In: Proceedings of the 6th Machine Learning for Healthcare Conference (2021)

    Google Scholar 

  12. Huang, Z., Long, G., Wessler, B., Hughes, M.C.: Tmed 2: a dataset for semi-supervised classification of echocardiograms (2022)

    Google Scholar 

  13. Kazemi Esfeh, M.M., Luong, C., Behnami, D., Tsang, T., Abolmaesumi, P.: A deep Bayesian video analysis framework: towards a more robust estimation of ejection fraction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 582–590. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_56

    Chapter  Google Scholar 

  14. Liu, F., Wang, K., Liu, D., Yang, X., Tian, J.: Deep pyramid local attention neural network for cardiac structure segmentation in two-dimensional echocardiography. Med. Image Anal. 67, 101873 (2021)

    Article  Google Scholar 

  15. Melas-Kyriazi, L.: Vit pytorch (2020). https://github.com/lukemelas/PyTorch-Pretrained-ViT

  16. Mokhtari, M., Tsang, T., Abolmaesumi, P., Liao, R.: EchoGNN: explainable ejection fraction estimation with graph neural networks. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention. MICCAI 2022, vol. 13434, pp. 360–369. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_35

    Chapter  Google Scholar 

  17. Otto, C.M., et al.: 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary. J. Am. Coll. Cardiol. 77(4), 450–500 (2021)

    Article  Google Scholar 

  18. Ouyang, D., et al.: Video-based AI for beat-to-beat assessment of cardiac function. Nature 580, 252–256 (2020)

    Article  Google Scholar 

  19. Reynaud, H., Vlontzos, A., Hou, B., Beqiri, A., Leeson, P., Kainz, B.: Ultrasound video transformers for cardiac ejection fraction estimation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 495–505. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_48

    Chapter  Google Scholar 

  20. Roshanitabrizi, P., et al.: Ensembled prediction of rheumatic heart disease from ungated doppler echocardiography acquired in low-resource settings. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13431, pp. 602–612. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_57

    Chapter  Google Scholar 

  21. Spitzer, E., et al.: Aortic stenosis and heart failure: disease ascertainment and statistical considerations for clinical trials. Card. Fail. Rev. 5, 99–105 (2019)

    Article  Google Scholar 

  22. Stacey, J., Belinkov, Y., Rei, M.: Supervising model attention with human explanations for robust natural language inference. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 10, pp. 11349–11357 (2022)

    Google Scholar 

  23. Suetens, P.: Fundamentals of Medical Imaging, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  24. Thomas, S., Gilbert, A., Ben-Yosef, G.: Light-weight spatio-temporal graphs for segmentation and ejection fraction prediction in cardiac ultrasound. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 380–390. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_37

    Chapter  Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates (2017)

    Google Scholar 

  26. Xue, M., et al.: Protopformer: concentrating on prototypical parts in vision transformers for interpretable image recognition. ArXiv (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purang Abolmaesumi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2677 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mokhtari, M., Ahmadi, N., Tsang, T.S.M., Abolmaesumi, P., Liao, R. (2024). GEMTrans: A General, Echocardiography-Based, Multi-level Transformer Framework for Cardiovascular Diagnosis. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics